B

AD-A230 461

M
DTIC
B\ ELECTE
JANO 7 iy |}

AUTOMATIC DETERMINATION OF
RECOMMENDED TEST COMBINATIONS
FOR ADA COMPILERS

THESIS

James Stuart Marr
Captain, USAT

AFIT/GCS/ENG/90D-09

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY
— e e 1

TETRPUTION STRTOGRT K Wright-Patterson Air Force Base, Ohio
' 91 1 3 79

(S

AFIT/GCS/ENG/90D-09

- AUTOMATIC DETERMINATION OF
RECOMMENDED TEST COMBINATIONS

FOR ADA COMPILERS
THESIS """",
James Stuart Marr D T l C
Captain, USAF ELECTE)
¢ AFIT/GCS/ENG/90D-09 " JANO 7 1991 '

Approved for public release; distribution unlimited

AFIT/GCS/ENG/90D-09

AUTOMATIC DETERMINATION OF RECOMMENDED

TEST COMBINATIONS FOR ADA COMPILERS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science (Computer Science)

James Stuart Marr, B.S.

Captain, USAF

December, 1990

Approved for public release; distribution unlimited

Preface

The purpose of this research was to investigate techniques for automatic identification
of recommended test combinations for Ada compilers. From the outset, this task was
already considered “far more intuitive” than any “reasonable algorithm” could be expected
to handle. With the contractual development of such a tool deemed impractical, I possessed
a research topic with a wide-open challenge. Whil: the prototype program I developed is
still dependent on a certain amount of “human intuition”, it did demonstrate the potential
benefit of using such automated techniques for identify, .g rec. n1mended test combinations

for Ada compilers.

I am grateful to several individuals for their contributions toward the completion
of this thesis. To begin my background research, I solicited information from the com-
puter network community. Several individuals were kind enough to E-Mail references to
published works or experts in the field of compiler testing. To each of them I extend my
thanks. In particular, I must express my appreciation to Glenn Kasten of Ready Systems,
California for providing the Gen test case generator that played a key role in this whole
effort. Without it, I would not have been able to develop my prototype. I also thank
Steve Wilson of the ACVC Maintenance Organization and Deborah Rennels of New York
University for providing important background information on this problem and the ad-
vances being made in related applications. I thank my thesis advisor, Maj Pat Lawlis,
for her guidance and comprehensive review of several iterations of thesis drafts. I also
thank my committee members, Maj Dave Umphress and Maj Jim Howatt, for their help

in introducing me to this research topic and for their assistance as readers.

ii

Above all, T thank my Lord Jesus Christ for giving me the ability and endurance

to reach this culmination of my AFIT experience. And finally, I wish to thank my wife

Melissa for supporting me throughout this endeavor.

Commit thy way unto the Lord, trust also in Him, and He shall bring it to pass.

i

Psalm 37:5

James Stuart Marr

Acoesyion Yor

DYIC TAB
Unannounced
Justification o .|

NTIS GRASI &
0
0

By

Distribution/

Availablility Codes

iﬁl.v’élz. sndfor
Diat | Special
- l !

AT

Table of Contents

Page

Preface . . . o . e e e e e e e e ii
Listof Figures v ot it i e e viii
Listof Tables i i i e e X
Listof Acronyms i i e e e e e e e xi
Abstract e e e e e e e e e xiii
I. Introduction e e e e e 1-1
1.1 AdaBackground o 1-2

1.2 Ada Compiler Validation Capability, 1-3

1.3 Ada Features Identification System 1-3

1.4 Problem Statement. 1-4

1.5 Scope . o oo e e 1-6

1.6 Development Environment ., ,. e e e 1-8

1.7 Approach . . .o v v v it i e e 1-8

1.8 Thesis Overview e ‘e 1-9

IL Literature Survey e e e e e e e e e 2-1
2.1 Compiler Validation and Testing - 2-1

2.2 Ada Compiler Validation Capability (ACVC) ..., 2-3

2.2.1 ACVC Development Approach. e 2-3

2.2.2 Ada Compiler Validation Implementers’ Guide. . . . 2-5

2.2.3 Validation Procedures. G e e e e 2-6

2.2.4 ACVC Limitations.. e e e e e 2-7

iv

2.3 Automatic Compiler Testing 2-8

2.3.1 Annotating Grammars. 2-8

2.3.2 Compiler Test Case Generators. 2-12

24 Conclusion i e 2-1.

III. ~ Solution Design v o v it i i e e e 3-1
3.1 Objective i i i i e e e e 3-1

3.2 Annotating the Ada Grammar 3-1

3.3 Processing the Grammar 3-6

3.4 Analyzing Combinations 3-7

3.5 DatabaseInterface 3-7

IV. Solution Implementation 4-1
4.1 Grammar Annotation 4-1

4.2 Gen to ALJANT Interface 4-4

4.3 ALIANT Prototype Development 4-6

V. Test and Analysis o o i i i i e e e e 5-1
5.1 Test Objectives v v v v v it i i i it e 5-1

5.2 Grammar Test Setup. 5-2

5.3 Adagenl GrammarResults 5-4

5.4 Adagen2 Grammar Results 5-12

5.5 Error Condition Analysis, 5-17

VI. Conclusions and Reconmendations 6-1
6.1 Research Conclusions 6-1

6.2 Recommendations for Further Research 6-3

63 ATinalWord 6-6

Appendix A.

Al
A2
A3
Ad
AS

Appendix B.

B.1
B.2
B.3
B.4
B.5
B.6
B.7

Appendix C.

C1
C.2
C.3

Appendix D.

Appendix E.

D.1
D.2

E.1
E.2

Gen - A Test Case Generation Program A-1
GrammarsS. . « . v v vt i e e e e e A-1
Ada Grammar to Gen Grammar A-2
BuildingRules A-3
Randomness Constructs A-4
Using the Test Case Generator A-5
ACVC Test Class Examples B-1
Report Utility Package. B-1
Class A Test Example B-3
Class BTest Example B-5
Class CTest Example B-7
Class D Test Bxample, B-9
Class B Test BExample, B-11
Class L Test Example e e e e e e e e B-14
Lex Description i i i, C-1
Lex Description, . .. i i i i it e C-1
Sample lex_spec Listing e e C-8
Sample mklspec Listing, C-15
Source Code i D-1
Shell Scripto e D-1
AdaCode i e D-4
Input Grammars E-1
Adagenl Grammar v v v vt e e e e E-1

Adagen2 Grammaro e E-10

Appendix F. ALIANT Operating Instructions and Output -1
F.1 Interactive Operating Instructions F-1
.2 Batch Operating Instructions F-5
.3 Sample Interactive Qutput r-7
F.4 Sample Support FileFormats F-11
Bibliography o e e e e BIB-1
Vb .t e e e e e e e e e e e e e e e e e VITA-1

vii

List of Figures

A A Pt oty 8 et L L s

Figure Page %
1.1. AFIS Requirements ittt i, 1-5 %?
1.2, AFIS Diagram v v v v it e et e e e e e e 1-5
3.1. ALIANT Prototype Context Diagram 3-2
3.2. ALIANT Process Descriptions 3-3
3.3. Ada Identifier Grammar Rules 3-4
3.4. Gen Input for Identifier Grammar Rules 3-4
3.5. Modified Gen Input for Identifier Grammar Rules 3-5
3.6. ALIANT Prototype Data Flow Diagram 3-8 ::
4.1. ALIANT Prototype Requirements 4-7
4.2. Executing ALIANT Prototype, 4-8
4.3. ALIANT Prototype File Descriptions 4-9
4.4. ALIANT Object-Oriented Description 4-11
4.5. ALIANT Structure Diagram 4-12
4.6. Matrix_Pkg Procedure Descriptions 4-13
4.7. Creating YylexObject Code 4-16- :
4.8. Creating Executable ALIANT Driver 4-17 f
4.9. Modifications to lex.yy.c Program 4-18
4.10. Features_Pkg Procedure Descriptions 4-19
4.11. Creating lex_spec Lex Specification 4-21
4.12. ALIANT Prototype Error Detection 4-27
5.1. Adagenl Summary Totals Graph 5-11
5.2. T-Adagenl Summary Totals Graph 5-13
5.3. Adagen2 Summary Totals Graph 5-16

Figure
5.4. T-Adagen2 Summary Totals Graph [

C.1. Sample Yylex Input/Output

Page
5-18

C-7

Table

List of Tables

4.1. Estimated vs. Actual Number of Combinations

5.1.
5.2.
5.3.

C.1.

ALIANT Test Selection Options

Adagenl Grammar Test Results

Adagen2 Grammar Test Results

Lex Size Parameters

............................

Page

4-24

List of Acronyms

ACLEC ~ Ada Compiler Evaluation Capability

ACVC - Ada Compiler Validation Capability

AFIS - Ada Features Identification System

AFIT - Air Force Institute of Technology

Al - Ada Issue

AIG - Ada Compiler Validation Implementers’ Guide
ALIANT - Ada Language Index Analyzer Tool

AMO - ACVC Maintenance Organization

ANSI - American National Standards Institute

ASCII - American Standard Code for Information Interchange
AVF - Ada Validation Facility

BNT - Backus-Naur Form

BSD -~ Berkeley Software Distribution

BSI - British Standards Institution

CAMP - Common Ada Missile Packages

COBOL - Common Business Oriented Language
DB, — Database of Ada features tested by ACVC
DBp,ss — Database of possible combinations of Ada features
DB, — Database of Ada features used in DoD software
DoD - Department of Defense

FCCTS ~ Federal COBOL Compiler Testing Service
ISO - International Standards Organization

L,; — Listing of ACVC tests affected by Al

LG - Linear Graph

LGN - Linear Graph Notation

LHS - Left Hand Sides

Lypyunt — Listing of unused and untested Ada features
L,eq - Listing of redundant ACVC tests

LRM - Language Reference Manual

Lypn, — Listing of used but untested Ada features

Xi

Lyant — Listing of Ada features users want tested

NYU - New York University

PAT - Program Analyzer Tool

PPG - Pascal Program Generator

RADC - Rome Air Development Center

RHS - Right Hand Sides

SEMANOL - A formal notation for language specification
TGG - Text Generator Generator

VSR - Validation Summary Report
YACC - Yet Another Compiler Compiler

AFIT/GCS/ENG/90D-09

Abstract

Ada compilers are validated using the Ada Compiler Validation Capability (ACVC)
test suite, containing over 4000 individual test programs. Each test program focuses, to

o

the extent possible, on a single language feature. Despite the advantages of this “atomic
testingmthodology, it is often the unexpected interactions between language features
that result in compilation problems. This research investigated techniques to automati-
cally identify recommended combinations of Ada language features for compiler testing.
A prototype program was dt veloped to analyze the Ada language grammar specification
and generate a list of recommended combinations of features to be tested. The output
from this program will be used within the Ada Features Identification System (AFIS), a
configuration management tool for the ACVC test suite. AFIS is being developed by the
ACVC Maintenance Organization (AMO). The prototype uses an annotated Ada language
grammar to drive a test case generator. The generated combinations of Ada features are
analyzed to select the combinations to be tested. While the skill and intuition of the
compiler tester are essential to the’annotation of the Ada grammar, the.prototype demon-

strated that automated support tools can be used to identify recommended combinations

for Ada compiler testing.)

‘e /—

xiii

AUTOMATIC DETERMINATION OF RECOMMENDED

TEST COMBINATIONS FOR ADA COMPILERS

1. Introduction

Functional testing is a commonly used technique for validating programming lan-
guage compilers. It “...is the process of executing a series of generally independent tests
designed to exercise the various functional features of a software product » (32:1051).
Each test case is usually designed to evaluate a limited number of language features. This
practice simplifies the testing process by focusing on the specific objective of the test,
while minimizing interactions between language features. Unfortunately, it is often the
unexpected interactions between language features that result in compilation problems.
Although it may be possible to develop a test case for each language feature, it is im-
practical to develop tests for all combinations of features. Therefore, compiler test suite

developers must determine which combinations of language features to test.

This research investigated techniques to automatically identify recommended com-
binations of Ada language features for compiler testing. A program was developed to
analyze the Ada language grammar specification and generate a list of recommended com-
binations of features to be tested. The output from this program will be used within the
Ada Teatures Identification System (AFIS), a configuration management tool for the Ada

test suite. AFIS is being developed by the Ada Compiler Validation Capability (ACVC)

Maintenance Organization (AMO).

1.1 Ada Background

The development of the Ada programming language originated in ithe Common High
Order Language Program, a Department of Defense (DoD) sponsored activity that began
in 1975 (39:11). Among several factors leading to the creation of a standard programming

language, and associated environments, were the need to

Reduce the Cost of Developing Systemns.

Increase the Portability of Software.

Increase the Portability of Software Developers.

Increase Productivity.

Increase Reliability and Maintainability.

Support the Management of Complexity and Change. (39:3)

The Ada requirements and design process involved several thousand contributors includ-
ing “...more than 50 people [who] were intimately involved in some facet of the design”
(12:13). The culmination of the “Ada effort” was the completion of the Ada Program-
ming Language Reference Manual, ANSI/MIL-STD-18154, in 1983 (16). To make sure
that all Ada implementations would conform to this standard, the DoD began researching

validation technology and procedures long before any Ada compilers were available.

It is to the government’s credit that Ada {is] the first programming language
to have [had 2} means for enforcing the specification as well as an analysis of

potential implementation difficulties and oversights available when they [would]
do the most good—before too great an investment [was] made in diverse (and
probably divergent) implementation efforts and (even more important) before

a large user population {came] to depend on nonconforming compilers. (21:58)

1-2

1.2 Ada Compiler Validation Capability

“In September, 1979, SofTech, Inc. started work on the Ada Compiler Validation
Capability (ACVC), an effort aimed at developing conformity tests for Ada compilers”
(23:195). The ACVC is the means by which an Ada compiler is tested to insurc compliance
with the requirements of the Ada Programming Language. The ACVC consists “...of the
test suite, the support programs, the ACVC user’s guide and the template for the validation
summary report™ (1:3). A validated and certified Ada compiler implementation is one that
has successfully passed the ACVC tests according to the procedures outlined in (1). The
ACVC Maintenance Organization (AMO) at Wright-Patterson AFB, Ohio, provides the
technical and administrative support required to produce and distribute ACVC versions,

and perform quality control and configuration management on the ACVC test suite.

1.3 Ada Features Identification System

The Ada Language is continually subject to new interpretations and refinements that
affect the ACVC test suite. As Ada Issues (Als) are distributed, the AMO must identify
affected ACVC tests for modification manually. “With 4000 tests in the test suite and a
large and growing number of Als, hand identification is becoming increasing ineffective”
(3:1). Tor example, one recent revision to the ACVC validation suite contained “...more
than 400 changes compared with the previous set of tests, ...[A]bout 400 of those changes
were just clarifications and about 43 were substantive in nature” (7). These and other
challenges led the AMO, in early 1988, to propose the development of the Ada Features
Identification System (AFIS). The AFIS would be used to identify which Ada language

features need to be tested in combination, identify redundant ACVC tests, identify, for

1-3

modification, those ACVC tests affected by Als, and provide a smooth transition of the

ACVC to the next Ada standard, Ada 9X (44, 5, 6).

The proposed AFIS consists of three parts: the Ada Language Index Analyzer Tool
(ALIANT), the Program Analyzer Tool (PAT), and the associated database management
system. The ALIANT would identify the combinations of dependent features that exist in
the Ada language and output the information to the database (DBposs). The PAT would
identify those combinations used in operational DoD software and in the current version
of the ACVC, and output the information to the AFIS database (DBg, and D Bgeye).
The AFIS database would be queried to obtain the following types of information: a list
of all tests affected by an Al (Ly;), list of all redundant ACVC tests (Lyeq), 2 list of
unused and untested combinations (Lnyunt), and a list of used but not tested combinations
(Lynt).- The Lypyne listing would be distributed to Ada users to “...determine which of
these combinations they would like to use but can’t due to current compiler limitations
(Lwant)” (3:para ¢.5.8). The Lyqane listing would be used to decide what types of tests
should be added to the ACVC test suite. Figure 1.1 summarizes the AFIS requirements

and Iigure 1.2 is a diagram of AFIS.

1.4 Problem Statement

The goal of this research was to develop an ALIANT prototype that would auto-
matically identify recommended combinations of Ada features for compiler testing. The
original AFIS statement of work was issued in 1988 (3). New York University (NYU) is
currently under contract with the AMO to implement the PAT and the AFIS database.

They chose not to attempt implementation of the ALIANT portio. of the AFIS due to

1-4

RUN TOOLS

ALTANT
PAT against ACVC
PAT against DoD s/v

QUERY

DBacvc for features identified in Als
DBacvc for multiply tested features
DBposs and not DBsw and not DBacvc
DBposs and DBsw and not DBacvc

SEND

Lnunt to users

Figure 1.1. (44)

PRODUCT

DBposs (Database of possible combinations)
DBacvc (Database of tested combinations)
DBsw (Database of currently used combinations)

Lai (List of all tests affected by Als)

Lred (List of redundant tests)

Lnunt (List of unused and untested combinations)
Lunt (List of used but not tested combinations)

Lwant (List of unused combinations users wanted)

!///,LRM Index ACVC —
DoD S/W
Als S
DBposs DBacvc
AFIS DBsw
DBMS
Lnunt
Lred Lai
Lunt * Lwant
Y

Maintain ACVC

Figure 1.2. (44)

1-5

the combinatorial complexity of determining the combinations of Ada language features

to test (34).

With regard to compilers it is certainly true that it is not practical to test
all possible combinations of language components and data types. ...[but]it is
certainly possible to test all reasonable combinations. What is “reasonable” is :
admittedly a subjective judgement, but such subjectivity regarding test limits f
is hardly unique to software testing. (32:1051)

R R G Sy TV

The problem is how to identify the “reasonable” combinations that should be tested.
As the ALIANT name implies, the original statement of work for AFIS suggested analysis
of the Ada Language Reference Manual (LRM) index to determine the recommended
combinations of Ada features to test. A more formal definition of the relationships among g
Ada language features exists in the Ada grammar as found in Appendix E of the LRM

(16).

(PPN

Mn

b T,

Upon first examination, it was believed that feature dependencies were re-
vealed by extracting each of the features and nested subfeatures from the index.
Unfortunately, identifying dependencies proved to involve far more intuitive
judgment than at first believed. No reasonable algorithm has been developed
to effectively extract combinations of dependent features from the index. (35:3)

B TR

£ W it ta AL M L

The AFIS is clearly incomplete without the ALIANT capability. To reap the full advan-

P23 st TNV T ¥ 3,

tage of the AFIS capability, a method must be developed to generate the recommended

combinations of Ada language features.

EET IR IR OR N I 22X

rebdas -

1.5 Scope

3

The scope of this research effort was limited to the identification of the recommended

combinations of Ada features. This research did not attempt to generate the test cases

1-6

containing the recommended combinations. The focus was on demonstrating the feasibility

of the proposed ALIANT subsystem of ATIS.

The type of feature combinations generated by this research attempted to parallel the

primary features identified for the PAT subsystem. The PAT development team identified

NUhn sl 200

a set of 297 primary features from the Ada grammar and from terms in the Ada LRM

index.

In most cases, the features are either nonterminals of the syntax summary,
or major terms of the index (those printed in boldface), or both. In some cases,
one feature is a general or basic term, and a few other features are special cases
of that general feature. For example, the feature “generic.formal_type” has sub-
cases “genericformal.type:discrete_type”, “genericformal_type:integer_type”,
etc. (35:8)

These primary features have effectively taken simple combinations of features and given

them a name so they can be treated as atomic features. Within the PAT subsystem, these
primary features are used to identify the features that exist in particular test patterns used ’

to search the ACVC test suit or DoD software. A detailed description of how PAT uses

these test patterns and primary features can be found in (35).

The recommended combinations of Ada features generated by the ALIANT prototype

do not specify the order or context of the features. The PAT subsystem must be used to

determine if a specific permutation of a given primary feature combination occurs in the

ACVC test suit or DoD software.

1-7

.

1.6 Development Environment

The availability of the following resources was assumed during the development of

the solution design:

¢ The Gen compiler test case generator (See Appendix A for a description of the Gen
software).

o An Ada programming environment which would allow interface to the Gen software
which is written in C.

o An electronic copy of the Ada grammar which would be annotated to meet the input
requirements of the Gen software.

The Verdix Ada programming environment, hosted on the AFIT Galaxy computer
(Elxsi-6400 with 4.3BSD UNIX operating system), was chosen as the development envi-
ronment for the ALIANT prototype. That computer system provided the necessary Ada
support tools and was compatible with the requirements of the Gen software. The elec-
tronic copy of the Ada grammar was obtained through the Ada Information Clearinghouse

services to simplify the entry of the annotated grammar input for the ALIANT prototype.

1.7 Approach

The purpose of this research was to investigate techniques for automatic identification
of recommended Ada compiler test combinations. These techniques have been applied to

the developr. - nt of an ALTANT prototype, which uses the Ada language grammar as input.

The first step in the research was the completion of a survey of literature related to
this topic. Next, the Gen program was used to investigate generation of Ada test cases.

Initial tests used a subset of the Ada grammar, modified to meet the particular input

1-8

requirements of the Gen software. Since the generator tool can potentially generate an
infinite number of combinations, experimentation with the Gen randomness constructs
was required to limit the combinations to a “reasonable” number. After refining the
techniques on a subset of Adz, the test case generation was extended to include the full
Ada grammar. Next, a program was developed to analyze the Gen output. This program
was used to search the generated Ada language combinations and perform a tabulation of
the most frequent combinations of two features, three features, and so on. An interface
between the analyzer program and a prototype AFIS database was developed to complete
the ALIANT prototype. The final step of this thesis was analyzing the feasibility of
implementing the ALIANT validation tool, based on the ALIANT prototype. The analysis

includes recommendations for further study and improvements.

1.8 Thesis Overview

Chapter II documents the results of the literature review and provides background
material for this thesis. The emphasis is on Ada compiler validation and methods for

generating compiler test cases.

Chapter III outlines the design of the problem solution. This design describes the
steps required to implement the problem solution and indicates what resources/tools are
used to solve the problem.

Chapter IV covers the implementation of the problem solution. It describes any

cm

difficultics cncountered during implenentation and discusses what dedisions were made, if

any, to modify the solution design.

1-9

Chapter V includes the final analysis of the problem solution. The results of the

solution (ie. generated computer products) are presented and their meaning is discussed.

Finally, Chapter VI contains conclusions about the overall thesis effort and recom-
mendations for further study. Supplementary material and computer generated products

are included as appendices to this thesis.

1-10

II. Literature Survey

This chapter provides background material related to this research effort. It begins
with a brief discussion of compiler testing in general and then describes the Ada Compiler
Validation Capability (ACVC). The ACVC development approach, validation procedures
and ACVC limitations are presented. Next, several formal language specification tech-
niques are described including attribute grammars, denotional semantics and high-level
semantics. Finally, four different rescarch papers concerning automated compiler testing
are summarized. Some of the techniques used in these papers will be applied to this thesis

research.

2.1 Compiler Validation and Testing

“Software validation .. .[is] the process of testing a completed software product in its
operational environment” (32:1051). Compiler validation checks the conformance of a com-
plier implementation to the applicable language standa. ' and differs from the validation

of applications scftware in several respects:

¢ Validation systems must be capable of functioning on a variety of dissimilar hardware
and operating systems.

e The staff performing the validation is not involved in the development or the main-
tenance of the products being tested.

o The results of a validation could impact the eligibility of the product for procurement.
(32:1051) (10)

The most commonly used method for testing compilers is functional testing. As

mentioned in Chapier I, “functional testing is the process of executing a series of generally

2-1

independent tests designed to exercise the various functional features of a software product”
(32:1051). This testing method is considered to be the “most thorough technique presently
available” for testing software. Since compilers have a formal specification, the grammar,
they are especially “amenable” to construction of functional tests for each feature. In
fact, a later section in this chapter will discuss tools that will automatically generate
compiler test cases from the grammar that defines the language. Even with such automated
tools, exhaustive testing is impractical, if not impossible. Therefore, compiler validators
must select a reduced set of test cases that will achieve nearly the same confidence level
as exhaustive testing. A technique applicable to limited combinations of independent
language features is orthogonal Latin squares. According to Robert Mandl, this technique

“ ...yields the informational equivalent of exhaustive testing at a fraction of the cost”

(31:1054).

Most validation test suites for standard languages still rely on time consuming man-
ual generation of test cases. For example, the Federal COBOL Compiler Testing Service
(IFCCTS) and the Ada Compiler Validation Capability (ACVC) manually develop individ-
ual test cases for compiler testing. In most cases, this is satisfactory because once the test
suite is developed it remains static except for occasional changes to the language standard
that require the test suite to be updated. Later sections of this chapter will discuss how

automatic generation may be used as a complement to such manually prepared test suites
(32) (23) (14) (15).
The compiler validation process only determines the conformance of a given com-

piler to the associated language standard. A validated compiler is one that meets the

requirements of each test case in the validation suite. Validation is not the same as eval-

2-2

LA g

1

U gt L et i

|
Lt g i !

uation, in which a compiler is tesied for such factors as efficiency and speed. A validated
compiler may not be suitable for certain applications for various reasons, such as memory
limitations or machine dependencies. Additional evaluation techniques are used to deter-

mine the fitness of one compiler or another for a specific user application (40) (20) (27)

(13).

2.2 Ada Compiler Validation Capability (ACVC)

The ACVC tast suite is used to validate Ada compiler implementations. This section
examines the background of the ACVC and describes the procedures used to validate a

compiler.

2.2.1 ACVC Development Approach. The development of the ACVC test suite be-
gan before the Ada language Standard was published. “The decision to establish an in-
dependent test team before Ada’s design was even near completion was essential to the
success of the ACVC effort and helped considerably in improving the precision of the even-
tual Standard” (23:211). From the start, the policy was established that would require a
compiler implementation to pass “all applicable correct tests” to be usable on DoD projects

(23:201).

The development philosophy for the ACVC test suite included the requirement for
many small test cases. Each test case was designed to test a limited number of Ada features
to minimize the impact of a failed test and to simplify identification of the feature that
failed the test. Particular attention was given to those parts of the language that are hard to

implement. This philosophy is intended to make certain all compiler developers implement

2-3

L U

gl

RSP Y (IR IR L AT e BUNARE,

m

A L

At L s

the language carefully and completely. The ACVC test programs were developed manually

at an average cost of “8 person-hours” for each test (23:211).

The [ACVC] test suite is updated continually and released periodically.
Updates are needed to correct errors in tests. In addition, new tests are added,
and sometimes existing tests are strengthened. Sometimes tests have to be
changed because of interpretations recommended by the Language Maintenance
Committee/Panel. (23:208)

The ACVC test suite consists of over 4000 test files in the following six classes:

o Class A : legal Ada programs that should compile successfully.

o Class B : illegal Ada programs that should not compile successfully.

o Class C : legal Ada programs that should compile and execute successfully.
o Class D : tests that check compiler capacity limits.

o Class I : executable tests that check implementation dependent options.

o Class L : illegal Ada programs that should be detected at link time. (2:1-4,1-5)

This classification of test cases shows the “breadth of test coverage and helps automate the
analysis of test results” (23:60). Although there are a large number of individual test cases,
many of the tests can be chained tugether to reduce the amount of manual intervention
required to validate a compiler. Much of the analysis of test results is automated to
improve responsiveness and reliability. Examples of each class of test cases are provided

in Appendix B.

The Ada standard permits some features to vary among compiler implementations.
Some ACVC test cases are designed to determine the behavior of a compiler with regard

to such characteristics as nesting of loops, expression evaluation, rounding methods, input

2-4

and output features, and so on. The results of such test cases are reported for informational
purposes in a Validation Summary Report (VSR). Such features as maximum length of an
input line or the maximum precision in floating-point type declarations will differ between
compilers. Therefore, some of the ACVC test cases are “templates” that include test
parameters to make the test case compatible with the compiler being validated. After
providing appropriate values for these parameters and adding any required job control

statements, the test cases are submitted to the compiler for testing (21:62).

2.2.2 Ada Compiler Validation Implementers’ Guide. The Ada Compiler Valida-
tion Implementers’ Guide (AIG) (22) was developed in response to the DoD’s requirement

that the ACVC contractor produce “a report to aid compiler developers”:

The report should identify common errors in Ada compilers, describe com-
niler implementation techniques that will avoid difficulties, and provide ex-
emplary programs that illustrate potential trouble spots i conforming to the
standard and that clarify the intended interpretations of the standard. (21:58)

The AIG is written and used in parallel with the Ada Language Reference Manual
(LRM). Each section in the AIG corresponds to a section in the LRM that describes a

particular feature of the language. The AIG section contains up to seven subsections as

follows:

¢ Semantic Ramifications — documents semantic implications that might not otherwise
be obvious from a reading of the LRM.

o Legality Rules - explicitly lists context-sensitive syntactic and semantic legality rules
to be checked by an Ada translator prior to beginning execution of an Ada program.

¢ Exception Conditions — explicitly lists the conditions under which an implementation
is required to raise an exception associated with some predefined language construct.

2-5

Test Objectives and Design Guidelines - specifies the validation tests to be written,
lists the problems to keep in mind while writing test cases under “Implementation
Guidelines”, and, when necessary, outlines the program structure required to satisfy
a test objective.

Approved Interpretations — summarizes approved interpretations of the LRM which
correct errors, ambiguities, or inconsistencies.

Changes from July 1982 - describes changes to the draft LRM, dated July 1982, that
affect the Ada feature describe in this AIG section.

Changes from July 1980 - describes changes between the July 1980 and July 1982
LRM drafts. (22:1-1, 1-2)

2.2.83 Validation Procedures. The ACVC test suite is released for a six month review

period before it is used in validation tests. During that time, compiler implementers or

other parties may submit comments to the ACVC Maintenance Office (AMO). “At the

end of six months, the new version of the ACVC is released for validation use for a period

of 18 months” (1:9). The procedures for validating an Ada compiler are specified in the

Ada Compiler Validation Procedures (1). The validation by testing is accomplished in the

following six steps:

Validation Agreement - the compiler implementer becomes a customer of an Ada
Validation Facility (AVF) by formal agreement.

Prevalidation — the customer tests the candidate Ada compiler using a customized
ACVC test suite and submits results to the AVF.

Validation Testing — the AVF tests the candidate compiler using the customized
ACVC test suite and compares with the prevalidation tests.

Declaration of Conformance — the customer declares the availability of a validated
Ada compiler.

Validation Summary Report — a Validation Summary Report (VSR) is produced
by the AVF describing the extent to which an Ada compiler conforms to the Ada
standard.

Validation Certificate - a Validation Certificate is issued that expires one year after
the expiration date of the ACVC version used for the validation. (1) (2)

2-6

Under certain conditions, ar Ar. compiler implementation may be validated by regis-
tration. This method is used in cases where a validated compiler is changed for “corrective,
adaptive, or perfective” reasons within the “scope of software maintenance” (1:17). These
procedures allow minor modifications to be made to a validated compiler without having

to reaccomplish the entire validation by testing process.

2.2.4 ACVC Limitations. The ACVC validation suite determines the conformance
of a compiler implementation with the Ada standard, but it does not give any indication of
its quality. As was mentioned earlier, validation is not the same as evaluation. To select
an Ada compiler for a particular‘application, the user must consider other requirements
such as speed, memory availability, support tools, etc. “Although over 200 validated Ada
compilers are available for more than 25 computer architectures, compiler technology has
been inadequate to support many of Ada’s features” (19:59). The Ada Compiler Evaluation
Capability (ACEC) is a test suite designed to evaluate the performance characteristics of

Ada compilers, a task the ACVC was never intended to handle (40) (41).

An example of known limitations of current ACVC test suites concerns the use of
generic units. During the development of the Common Ada Missile Packages (CAMP) soft-
ware by McDonnell Douglas Astronautics Company in St. Louis, contractors noted that
“validated Ada compilers frequently cannot handle any but the simplest generic units”
(24:75). The CAMP contractors pointed to the fact that most ACVC test cases are de-
signed to test a single objective. As a result, some of the more complicated cases are not
tested and validated compilers may not be able to support a “complex mix of generic units,

essential to the use of dynamic reusable software” (24:75). They recommended that more

2-7

complicated test cases be added to the ACVC test suite to remove the inadequacies noted

during the CAMP project (24) (37) (18).

The configuration management of over 4000 ACVC test cases is becoming a
formidable task. Some test cases are redundant and periodic updates of test cases con-
tinually change the composition of the ACVC test suite. Currently, the identification of
test redundancies and other maintenance functions are done by hand. The ACVC Main-
tenance Office (AMO) has undertaken the development of several automated tools that
will improve the configuration management capability of the ACVC. As described in the
introduction, the purpose of this research was to investigate the feasibility of one of those
automated tools, the Ada Language Index Analyzer Tool (ALIANT). The capability to
automatically identify test combinations for Ada compilers will help improve the ability of

the ACVC to validate Ada compiler correctness (3).

2.3 Automatic Compiler Testing

Advances in automated techniques for compiler testing are closely related to the
methods investigated in this research for identifying recommended test combinations for
Ada compilers. This section presents the background on developments in annotated gram-

mars and compiler test case generators. Similar techniques were applied to the development

of the ALIANT prototype.

2.8.1 Annotating Grammars. The first step in developing automated compiler test-
ing tools is to determine the format of the input grammar that will guide the generation

of compiler test cases (See Appendix A.1, for a brief summary of grammar notation or

(33) for more in depth coverage of grammar and compiler terminology). A context-free
grammar can generate programs that are valid syntactically but invalid semantically. In
other words, some valid programs can have invalid meaning. A language grammar can
also generate an infinite number of programs or infinitely long programs; therefore, ad-
ditional grammar constructs are required to limit test case generation to meaningful and
reasonably-sized programs. The following discussions present some research efforts in the

area of adding semantics to grammars.

2.3.1.1 SEMANOL specification. A 1978 Rome Air Development Center
(RADC) research effort (9) investigated methods for automated compiler test case gener-
ation. This research was spawned by the apparent inadequacy of existing compiler test

suites. The RADC researchers noted that existing test suite development methods were

e Not systematic.
o Not designed with reference to measures of test effectiveness.
e Prepared manually.

o Expensive. (9:2)

The SEMANOL specification language, developed as part an earlier RADC research
effort, is used to define a language’s grammar and the associated context-sensitive features
(this RADC report did not give the origination of the SEMANOL acronym). “A formal
SEMANOL specification of a programming language is a program; a program for processing
a source language program text written in the programming language being defined” (9:5).
The SEMANOL metalanguage, or language that describes another language, is combined

with the context-free grammar of a computer language to form the specification. The

2-9

S I g B A bt

¢ g i

e i 4 g A Stk g gl 1L

g 0 L N 2 5 ot LN H B i 0

MY S bt Wt g

specification consists of declarations, control commands, context-free syntax, and semantic
definitions (9:10). Although a considerable degree of human intervention is still requircd
to set up the SEMANOL specification, great benefits in reduced test case generation time
and increased test quality and consistency can be realized. This research effort established

a design framework for further experimentation and implementation (9).

2.3.1.2 Attribute grammars. Attribute grammars are used for the formal
specification of the semantics of a programming language. The development and use of an

attribute grammar for Ada is described in (17). Formally, an attribute grammar consists

of:

o a context-free grammar.
o a set of atiributes for each symbol of the context-free grammar.

e allribution rules establishing the value of every attribute according to the syntactic
production in which it appears and in terms of the values of other attributes of
symbols in the same production.

e conditions involving attributes of one production. If a given condition is not satisfied
by the attribute values of a particular subtree, a specific error message is given. (17:9)

An example of attributes in the Ada language is its strong type checking. The context-
free grammar may define a statement to allow two identifiers separated by an operator such
as “+”. The syntax is valid for any two identifier names formed by a legal combination of
characters. Ilowever, if one identifier was declared to be an integer type and the other is a
character type, the semantics of the language require an error to be generated. Compilers
must include the appropriate routines to check attributes of various language symbols.

Attribute grammars are a tool to specify suchk semantics within the context-free grammar.

2-10

Such attribute grammars are used in test case generation tools to insure the creation of

meaningful test cases in terms of syntax and semantics.

2.8.1.3 Denotional and Iligh-Level Semantics. Denotional semantics is a for-
mal method for giving mathematical meaning to programming languages. “Originally used
as an analysis tool, denotional semantics has grown in use as a tool for language design
and implementation™ (36:xi). As described in previous sections, the syntax of a program-
ming language can be described quite well with a context-free grammar. The semantics
or meaning of the sentences or programs generated by a language are more difficult to
represent formally. Denotional semantics is a method that is used to specify, in formal
notation, the meaning of a program. “The denotional semantics method maps a program
directly to its meaning, called its denotation. The denotation is usually a mathematical
value, such as a number or a function” (36:3). These formal specifications are being used
in several research efforts that “...demonstrate the possibility of automatically generating
compilers for no.. ¢ * * !languages from formal semantic descriptions” (29:3). These same

principles could be applied to automatic generation of the test cases to test a compiler.

Unfortunately, the compilers generated from such “classical” formal specifications
tend to have performance characteristics much worse than handwritten compilers (29:3).
As a result, a new style of semantic description is being developed called high-level seman-
tics. The “...high-level descriptions are easier to write and comprehend than traditional
denotational specifications .. .[and] realistic compilers can be straightforwardly generated
from high-level descriptions” (29:4). As mentioned before, lessons learned in compiler

generation can be applied to test case generation as well.

2-11

2.3.2 Co.piler Test Case Generators. Several research efforts have investigated
the automatic gencration of compiler test cases. This section summarizes four research

reports describing the development of compiler test case generators.

2.8.2.1 An Aulomatic Generalor for Compiler Testing. This article by
Franco Bazzichi and Ippolito Spadafora (8) examines a method for automatically gen-
crating compilable test programs. At the time this article was written, several methods
had been “...studied and developed t.» t=st compilers ...however, none of these methods
...[had] solved the problem completelt and efficiently” (8:343). The objectives of this
study were twofold. First, “...to automatically generate compilable programs for differ-
ent programming languages, ropidly and cost-effectively” (8:343). The authors adopted
a context-free parametric gra.amar which i 4 grammar containing additional context-
sensitive aspects. They used the grammar as ax input to an algorithm that would produce
a set of compilable programs. The second objective was to “...to generate incorrect pro-
grams in a controlled way, using the above-described methodology” (8:343). The incorrect
programs would be used to demonstrate that a compiler would reject a program containing

CrTors.

Features of Complete Compiler Tests. The ideal method of testing a
computer program is to run enough test cases so that every path in the code is executed
at least once. Unfortunately, the manual preparation of such exhaustive tests is very time
consuming. When a compiler is analyzing a source program, there is a clear relationship
between the states the compiler traverses and the syntax rules that were used to generate

the original source code. “Therefore, it is reasonable to assume that a fairly complete test

2-12

of a compiler should include a set of programs containing all the syntactical entities of the
language: the set of test programs should be derivable from the source grammar, using
cach [rule] of the grammar at least once™ (8:344). But there also must be a “criterion of
minimality” to keep the size of generated test programs within certain efficiency limitations.
For this reason, Bazzichi and Spadafora chose the criterion of “shortest derivation” when

generating test programs (8).

Limitations of Automatic Generation. The automatic generation of test
programs has certain limitations. Without knowing the inner workings of the compiler
under test (black boz testing), the automatically generated test cases cannot be expected
to detect all the errors a compiler may have. The involvement of experienced compiler
implementers is essential to understanding what types of errors are most likely. “The
type of errors which implementers may make must be hypothesized and tests must be
constructed which can only succeed if there are no errors present” (8:344). Therefore, the
authors of this study included a “flexible set of directives” that allow the generated test
cases to be produced in a “controlled” way according to the various parameters provided

by the compiler implementers (8).

2.3.2.2 Independent Testing of Compiler Phases Using a Test Case Generator.
This article by William Homer and Richard Schooler (25) considers the problems associated
with independent unit testing of compiler phases. The discussion focuses on “...the testing
of a large compiler whose modules, or phases, communicate via complex graph-structured
intermediate representations” (25:1). The design of any large computer program in modules

with well defined interfaces allows the development of each part to progress independently

2-13

of one another. Each module can be unit tested before final integration of all components.
“The obvious source of unit test inputs for a particular phase would be the preceding
phases, but stafling, scheduling, and technical considerations often lead to parallel, or ‘out
of order’, development of the phases” (25:2). As was mentioned in the previous article, the
manual fabrication of test cases is too time intensive for anything beyond a few simple test
inputs. The authors of this article present a generator that takes as input a context-free
grammar with some context-sensitive constructs to insure meaningful test cases will be

generated.

Linear Graph (LG) System. The compiler tested in this study uses the
LG (Linear Graph) System. LG provides compiler development tools and uses a human-
readable notation called LGN (Linear Graph Notation). The LGN “...was meant to
facilitate creation of test inputs and examinations of phase outputs™ (25:3). The LGN
format can be used to define test inputs to later compiler stages without having the carlier
stages completed. The LG system will convert the LGN into the proper internal data
structures for execution. All that is needed is a way to automatically generate the large
LGN tests that would be very difficult to produce manually. The authors used a tool called
Text Generator Generator (TGG) to automatically generate the LGN test cases. TGG
inputs a context-free grammar and generates strings of the grammar. As with the previous
study, this test case generator allows special “context-sensitive” constructs to be added to

the grammar to control the types of strings generated and to provide “pseudo-random”

behavior (25).

2-14

2.8.2.8 Automatic Generation of Pzecutable Programs to test a Pascal Com-
piler. This article by Dr. C. J. Burgess (11) describes work done to develop a means to
automatically generate compiler test programs that arc immediately compiled and exe-
cuted by the compiler under test. This differs from the methods discussed in the previous
two articles, in that those methods only generated the source code for test programs. The
programs still had to be individually compiled and tested. This article specifically concen-
trates on the generation of test programs for Pascal compilers. The programs are generated
from an attribute grammar and “...contain self-checking code so that only those programs
that fail to execute correctly will produce any output. Thus, by examining the output file,
those test programs that have failed to run correctly can be quickly identified, even though
a large number of programs may have been run” (11:304). Dr. Burgess feels that the com-
bination of automatically generated tests and manually generated tests should increase a

tester’s confidence that the compiler is correct.

Testing a Compiler. The test case generator system described by Dr.
Burgess is designed to produce a specified number of test programs, compile and execute
each one, and produce error messages for any tests that failed. If a test program compiles
and executes without errors, the only output produced for that test program will be a
Pascal comment listing the values used for random number seeds and the number of the
test program. If, however, the test program produces a compilation error, or fails at
execution time, additional error messages will be output. The source code for each test
program is discarded after execution, and the next test program is generated. This process

continues until the desired number of test programs have been generated, compiled, and

2-15

executed. The output listing can then be examined for error messages. If error messages
are found, “...the comment just before the output will contain the seceds from which the
source of the test program which failed can be recreated. This means that a large number
of programs can be generated and run through the compiler with very little extra demand

on file space” (11:315).

2.3.2./ FEzperience with a Compiler Testing Tool. This report by B. A. Wich-
mann and M. Davies (42) describes a compiler testing tool called the Pascal Program Gen-
erator (PPG). As with the Ada language, the Pascal programiaing language has a standard

validation suite that is used to validate Pascal compiler implementations.

The [validation] service, offered by BSI [(British Standards Institution))
and its licencees [sic] world-wide, ensures that validated compilers conform
closely to the ISO-Pascal Standard. While the 700 or so test programs in
the validation suite ensure that the syntax and semantics of the language are
supported adequately by validated compilers, it is nevertheless the case that
validated compilers still have significant bugs. (42:3)

The “bugs” that cause the most concern are those “...in which the compiler generates
incorrect code from a legal program” (42:3). The PPG is being developed as a comple-
mentary testing tool to the existing Pascal validation suite. Given a few inputs for a

random number generator, it will generate self-checking executable Pascal programs.

Testing Ezxperience. The PPG is still under development. Many issues
must be resolved, but the initial indications are that such an automated tool could be
very useful to compiler developers. The PPG can generate very large and complex tests

that may fail due to a bug that is unlikely to occur in normal vse. Tor this reason,

2-16

FERIIER PATAn

E

il

Apdoi 1 U el Sty s

it is too early to suggest incorporating the use of such generators in formal validation
suites. Ilowever, compiler-writers could benefit from such test generators for “in-house”
development testing. These tools may help identify errors that would not be detected by
the validation suite. The authors of PPG are considering a similar implementation for
the Ada programming language. They expect that such an implementation will be more

difficult to accomplish since Ada is more complex than Pascal (42:13).

2.4 Conclusion

Since grammars define the valid sentences in a given language, they can be used to
automatically generate compiler test cascs. The four research articles presented in this
chapter are examples of the progress that has been made toward developing automated
compiler testing tools . Most mature standard languages already have a comprehensive
test suite that has been manually developed over several years. Automated tools could
be used to supplement the formal validation process for these languages. In particular,
the Ada validation process may benefit from these compiler testing tools. The automated
testing tools are perhaps most valuable during compiler development/research in which a
compiler-writer needs the ability to quickly generate many test programs. Further research
in this area is sure to yield new techniques for determining the correctness of programming
language compilers.

The Gen compiler test case generator, similar to the automated tools described in
this chapter, was used in this 1esearch. Appendix A describes Gen in detail and the next

chapter explains how Gen was used to develop an ALIANT prototype.

2-17

i A ol Kl et L sl

o e ol

2l Mt s Ly

AL Y ot b bt €l

bt

LA LA 31 L

bl o Ao 2t Bttt $ s L L

e AL

sttt g e 3 o s L

et L1 0 00 e e Bt €230 00 i L

ulb ity

III. Solution Design

This chapter describes the solution design chosen to address the problem of deter-
mining recommended Ada compiler test combinations. As appropriate, background on

other design alternatives is provided to show what options were considered.

3.1 Objective

The overall objective of this problem solution was to develop a prototype of the
ALIANT subsystem of AFIS, the proposed ACVC configuration management tool. The
ALIANT prototype was designed to input an annotated Ada BNT grammar, analyze pos-
sible combinations of Ada features, and output the recommended combinations of Ada
features. A context diagram of the ALIANT prototype is shown in Figure 3.1. As indi-
cated in the context diagram, the prototype consists of two parts: the Gen software and
the analysis/selection procedures. The Gen software will generate feature combinations
according to the annotated Ada grammar (see Appendix A), while the remaining proce-
dures will analyze and select recommended combinations. Figure 3.2 contains the process

descriptions for the ALIANT prototype design presented in this chapter.

3.2 Annotating the Ada Grammar

The first design consideration was deciding how the Ada grammar would be anno-
tated to meet the input requirements of Gen, the first phase of the ALIANT prototype.
The grammar annotation is a manual process that must be completed before the ALIANT

prototype is executed. Before the various Gen randomness constructs could be added to

Annotated
Ada
Grammar

Grammar
Productions

/

ALIANT \

PROTOTYPE

Analysis/
Selection |
Programs |

Formatted
Recommended
Combinations

AFIS

Database

Figure 3.1. ALIANT Prototype Context Diagram

L ey L v bt G

L L Ml) Bk Tt S e T b | e i s

1.0 Generate Combinations.

Input An annotated Ada grammar in Gen compatible format.

Process This process is the Gen software. Test cases are generated ac-
cording to the annotated grammar. The number of combinations gen-
erated is determined by the generation statement, which is the last
entry in the annotated grammar.

Output Test case combinations containing character strings that were
enclosed in quotes in the annotated grammar.

2.0 Identify Combinaiions.

Input Test case combii.»tions from Gen.

Process Combinations are uniquely identified according to the collection
of features they contain. Null combinations and duplicate combina-
tions are discarded. Information stored about each combination will
include the number of features in the combination, the number of
times each feature occurred in the combination, and the number of
duplicates of the combination.

Output A data store containing the above information for each identified
combination.
3.0 Recommend Combinations.

Input Data store containing identified combinations.

Process Combinations are selected from all identified combinations ac-
cording to the number of times a combination was duplicated and the
number of features a combination contains. These threshold values
are entered by the user at runtime.

Output Data store containing recommended combinations.
4.0 Load AFIS Database.

Input Data store containing recommended combinations.

Process Therecommended combinations are stored in the AFIS database
format. This process translates the data store format into the
database bit-matrix format.

Output Recommended combinations in AFIS database format.

Figure 3.2. ALIANT Process Descriptions

the Ada grammar, it had to be in a form that Gen would recognize. For example, Fig-
ure 3.3 shows the Ada grammar productions for the identifier as it appears in Appendix
E of the Ada LRM. The direct translation of the grammar productions in Figure 5.3 to the
Gen input format is shown in Figure 3.4. Note the addition of the productions to generate
digits and letters and the ident_tail production to handle the zero or more option in the

original identifier production.

identifier ::= letter {[underline] letter_or_digit}
letter_or_digit ::= letter | digit

letter ::= upper_case_letter | lower_case_letter

Figure 3.3. Ada Identifier Grammar Rules

identifier = letter ident_tail
ident_tail = (("_" | "") letter_or_digit ident_tail) | ""
letter_or_digit = letter | digit

letter = upper_case.letter | lower_case_letter

1]

upper_case_letter = [A-Z]

[a-2]

lower_case_letter

digit = [0-9]
Figure 3.4. Gen Input for Identifier Grammar Rules

Gen is designed to generate valid, compilable test cases for a given grammar. For this
research, it was necessary to “remember” what language features were used to generate

a particular test case. For example, when the Gen compatible grammar of Figure 3.4

is executed by Gen, a series of randomly constructed identifiers is produced. Although
this is what Gen was designed to do, the identification of the Ada features that were
used to generate the identifiers is lost (i.e., ident_tail, letter_or.digit, letter, digit). Since
the purpose of the ALIANT prototype is to recommend combinations of features, the
actual generation of, say, identifiers is not desired. With this objective in mind, a different
approach was considered. By disregarding anything but the nonterminals in each Ada
grammar rule, the input to Gen can be modified so that the output only contains the
names of the Ada features used to generate the test case. Whenever a nonterminal is
to be expanded by a production rule, Gen can be instructed to output the literal string
representing that nonterminal. Referring back to the identifier example, Figure 3.5 shows
how this modified approach would be used. The literal strings in quotes are included in

the Gen output.

identifier = letter ident_tail

ident_tail = (("underline" | "") letter_or_digit ident_tail) | "*
letter_or_digit = letter | "digit"

letter = "upper_case_letter" | "lower_case_letter"

Figure 3.5. Modified Gen Input for Identifier Grammar Rules

Additional pruning of the grammar can be accomplished by raising the level at which
the literal strings are output. For example, in Figure 3.5, the string “letter” could have
been output instead of either “upper_caseletter” or “lower_case letter”. If the lower level
details are unnecessary, this choice would simplify the rules and the amount of output

produced. Most likely, the annotated grammar would probably go no lower than the level

of “identifier” in the example rules presented. Since the existing ACVC test cases handle
the simple checks for proper identifier construction, it would only be necessary to note
where an identifier appears in a more complex test case. The ALIANT prototype does not

need such details as what characters formed the identifier or how long the identifier was.

Based on the options just discussed, the modi fied annotated grammar of Figure 3.5
was chosen to eliminate some of the lowest level detail and to simplify the later analysis
requirements of the Gen output. After the original Ada grammar has been manually
translated into the Gen format described above, the randomness constructs are added to
those rules containing alternatives. The randomness constructs allow the user to tell Gen
which alternatives should be chosen more often than others. A detailed description of these
constiuc.s is provided in Appendix A. The values chosen for these randomness constructs
were based on experimentation and estimates of the most frequently used Ada features.
The next chapter will describe the implementation of the grammar annotation process in

more detail.

3.3 Processing the Grammar

The first step in the ALJANT prototype design is the generation of possible combina-
tions using the Gen software. This step is represented by process 1.0 Generate Combina-
tionsin Figure 3.6. Initially, a partially annotated subset of Ada was used to determine the
optimum techniques for generating the test cases. Then, the lessons learned were applied
to larger and larger subsets of Ada until the complete Ada language was inciuded. The
details of how the Ada grammar subsets were developed is provided in the next chapter.

The ALTANT design uses an ASCII data store between Gen and the analysis programs.

3-6

This ASCII data store provides a standard text format for storing the feature combina-
tions produced by Gen. This type of interface allows the Gen software to run to completion

without requiring complicated synchronization with the Ada analysis programs.

3.4 Analyzing Combinations

The next phase of the ALIANT prototype design consisted of specifying the processes
to analyze the Gen output and determine the recommended combinations to test. The
purpose of process 2.0 Identify Combinations in Figure 3.6 is to identify each generated
combination and assign a unique identification number to each one. This process discards
duplicate combinations and tallies the number of occurrences of each Ada feature for a given
test case. Process 3.0 Recommend Combinations eliminates combinations that include too
many language features and chooses the recommended combinations. The output from the

analysis phase is in ASCIT for later interface to the AFIS database.

3.5 Databace Interface

The final step in the solution design was the interface between the ALIANT prototype
and the AFIS database. Process 4.0 Load AFIS Database in Figure 3.6 represents the
interface routine that was designed to load the recommended combinations into the AFIS
database in the appropriate format compatible with the other AFIS subsystems. For this
research, the database format chosen to demonstrate the functionality of this interface was
a bit-matrix. For each recommended combination to be stored in the database, a record
will be output containing a unique identification number and an array of ‘0’s and ‘1’s. For

each possible feature in the combination, a ‘0’ will indicate the corresponding feature is
p g

3-7

Annotated
Grammar

1.0

Generate

A 4

Combinations
(Gen)

2.0
Identify

Combinations

3.0
Recommend

Combinations

4.0

Load
ATFIS
Database

Generated
Combinations

Identified
Combinations

Recommended
Combinations

Formatted
Recommended
Combinations

Figure 3.6. ALIANT Prototype Data Flow Diagram

3-8

Sttt a bt

LT I N O I R A

not included in the subject combination. A ‘1’ will indicate the feature is included in the
combination. A simple example of the database design is provided below for the case in

which there are only twenty features being considered:

1: 01100110001100001000
2: 11100000011000000100

3: 00000111000001110000

In the example above, the database contains 3 records numbered 1, 2, and 3. Each array
of ‘0’s and ‘1’s corresponds to 20 features numbered from left to right starting at 1. The
first combination consists of features 2, 3, 6, 7, 11, 12, and 17. Fach numbered feature
represents an Ada grammar nonterminal symbol. Any program using this database would

have to be given the mapping of feature number to the equivalent Ada feature.

The ALIANT design described in this chapter served as a starting point for the
prototype implementation. The next chapter will describe the development of the ALIANT

prototype using an iterative modeling technique.

IV. Solution Implementation

This chapter describes the details of the solution implementation. First, the anno-
tation of the Ada grammar is described. Next, the interfaces developed between the Gen
software and the ALIANT Ada programs are presented, followed by a discussion of the

ALIANT prototype development.

4.1 Grammar Annotalion

As shown in the previous chapter, the grammar annotation is a manual process.
Although some portions could possibly be automated, the only automated aid used in
annotating the grammar was that provided by a word processor’s global “find and replace”
feature. Such a feature was initially used to change all occurrences of “::=" in the Ada
grammar to the Gen equivalent “=". Appendix A contains a summary of the Gen input

requirements.

Although it was originally thought that a literal subset of the Ada grammar would
be used for initial development, it proved to be more difficult to pick out the productions
that would be used for one subset, only to add them in late:. The solution to this problem
was to leave all “left-hand sides” (LHS) of productions intact but to “short-cut” the “right-
hand sides” (RHS) by replacing all RHS containing terminal symbols by the corresponding
LHS in quotes. This causes Gen to output the names of the LIS if these productions are
encountered during test case generation. Productions containing only nonterminals were
already in the proper format once the “::=" sign was replaced by the “=" sign, and the

Gen randomness operator, “%”, was added to each alternative symbol, “|”. For RHS

4-1

that span more than one line, enclosing parentheses are required for Gen. For consistency
and clarity, the enclosing parentheses were used for all production’s RHS. The following

examples show how this was done. The Ada case.statement production,

case_statement ::=
case expression is
case_statement_alternative
{case_statement_alternative}
end case;

was replaced by the following statement:

case_statement = ("case_statement")

The Ada library.unit_body production,

library_unit_body ::= subprogram_body | package_body

was simply changed to the following statement:

library_unit_body = (subprogram_body | % package_body)

The Gen randomness construct, “%”, causes one of the alternatives to be chosen with a

probability equal to the other alternatives.

In some cases, additional productions had to be added to model the zero or more
notation found in the Ada grammar. For example, the highest level production in the Ada

grammar, compilation, uses the zero or more notation as shown below:

compilation ::= {compilation_unit}

The Gen compatible format of the compilation production used in this research is:

compilation = ("START_COMPILATION: "
(" | % compilation_unit more_units) ":END_COMPILATION \n")

more_units = ("" |) compilat .r_unit more_units)

The “START.COMPILATION: ” and “:END.COMPILATION \n” strings were
added to cause Gen to output clearly marked compilation test cases on separate lines.
This feature simplifies visual analysis of the Gen output and also provides a means for the
ALIANT prototype analysis programs to identify the start and end of each compilation

{est case.

The completely annotated Gen compatible grammar, using the method described
above, is provided in Appendix E.1. Unfortunately, this first method does not generate
detailed test cases. Since most of the productions are simplified on the RHS, the test cases
produced are at a very high level. Most of the productions are never reached during test
case generation. To demonstrate how the grammar can be modified to provide more detail,
another annotated gram:ar was produced. This second version, shown in Appendix E.2,
expands several of the productions that previously were reduced to a single quoted string
on the RHS. For example, the Ada production for generic.instantiation appears as follows

in the Ada grammar:

generic_instantiation ::i=
package identifier is
new generic_package_name [generic_actual_part];
| procedure identifier is
new generic_procedure_name [generic_actual_part];

4-3

| function designator is
new generic_function_name [generic_actual_part];

Since this research was not interested in the actual gencration of the nonterminal symbols
in the production above, the primary features mentioned in Chapter I were used to an-
notate the grammar. These “pseudo-nonterminals”™ yielded the following Gen compatible

production:

generic_instantiation = (("gen._function_instantiation " {
"gen_package_instantiation " | % “"gen_procedure_instantiation " |
"gen_subprog_instantiation ") ("" | } generic_actual_part))
Using the Gen randomness censtruct, “%”, without any numbers means each alternative
g
will be chosen with 2 probability equal to the other alternatives. An equivalent production
q
using specified probabilities would have the integer 25 following each of the first three
percent signs, and the integer 50 following the last percent sign. The production above

provides more detail than the previous “short-cut” version:

eneric_instantiation = (“generic_instantiation ")
g

The results and analysis of generating test cases using both Gen grammars is discussed in

the next chapter.

4.2 Gento ALIANT Inlerfacc

With the annotated grammars completed, the next step in the ALIANT prototype

implementation was determining how the output from Gen would be input to the Ada

4-4

AT

EIRRIELEYN

L T N N B U U SN SO KO

imneat kA

programs for analysis. Since the Gen program is a strictly “batch” operation, the UNIX
redirection and piping capabilities were chosen as the first interface between Gen and the
other programs. The UNIX redirection and piping features allow the transfer of data
between files and programs without user intervention and are frequently used in script
files that are executed in “batch” mode. As the next section will describe in more detail,
the analysis part of the ALIANT prototype was initially conceived as a batch operation
as well, so the use of redirection and piping was a good choice. The following command
line illustrates the use of redirection (“<”) to direct an input grammar file (adagen.gen)

into Gen (gen.exe), and piping (“|”) to send the Gen output to the ALIANT Ada analysis

programs:

gen.exe < adagen.gen | aliant_driver.exe

This method of interfacing the Gen output to the ALTANT analysis programs worked
fine in the batch mode of operations. When the evolving prototype of the ALIANT analysis
programs led to interactive input requirements, another method had to be employed. The
piping of Gen output to the ALIANT driver prevented the ALIANT analysis programs from
getting interactive input from the keyboard. All input had to come from the Gen program.
The alternative was to output the Gen test cases to an intermediate file and have the
ALIANT driver open the file during execution. This method would also allow interactive
entry from the keyboard. The second method assumed that the last line of the input
gramumar file would contain the gencration statement indicating how many compilations to
generate (see Appendix A for a review of the Gen input grammar format). Unfortunately,

this meant the number of combinations was “hard-coded” within the grammar and had to

4-5

q

Lttt e

Ll bl B 0

A Ll

o o et AL 0 e 1 o AL

b g 0 At 0t e L, P

z
=
E
3

be manually changed before each execution with a different number of combinations. This

inconvenience led to further improvements in the interface implementation.

Through an iterative prototyping process, several detailed requirements were eventu-
ally identified for a flexible and user friendly input to the ALIANT prototype. Figure 4.1
identifies the key requirements. The method chosen to implement all of these requirements
was a UNIX shell script. Appendix D.1 shows the commented shell script that implements
each user input interface requirement. A dataflow diagram illustrating the operation of
the shell script is provided in Figure 4.2. In the diagram, step A must terminate normally
before step B will execute. Each rectangle represents a file, keyboard, or screen as indi-
cated. The rounded squares represent processes performed by independent programs or
UNIX utilities as detailed in the shell script. A description of the various files mentioned

in this diagram and throughout this chapter can be found in Figure 4.3.

4.8 ALIANT Prototype Development

The ALIANT analysis programs were implemented using an iterative rapid proto-
typing approach. Using the high-level design presented in the previous chapter, an initial
prototype was developed. Irom this initial prototype, features were modified and new ones
added as detailed implementation decisions were made. Figure 4.4 is an object-oriented
diagram of the Ada portion of the ALIANT prototype final implementation. The de-
pendencies between the various Ada packages and driver subprogram are indicated with
arrows. lor clarity, tle dependencies involving two standard library packages, Text IO
and Math, are not shown. TextIO is used by each compilation unit except Lex_Pkg,

while Math is only required by Parameter Pkg. The corresponding documented source

4-6

e The A_.{ANT prototype will be executed with a single command and up to three
command-line parameters.

1. The root of the filename of the Gen input grammar without the generation
statement (i.e., this parameter would be adagenl for a filename adagenl.gen).

2. The number of compilation combinations to generate. This parameter will be
used to create a generation statement in the input grammar.

3. Anoptional batch input filename that will allow the user to execute an ALIANT
session in batch mode with the output going to a default file.

Error checking will be performed on input parameters and descriptive error messages
generated as necessary.

A Gen generation statement for the requested number of combinations will be ap-
pended to a copy of the input grammar and submittea .- the Gen program.

The number of requested combinations will be passed, via a file, to the ALIANT Ada
programs for creation of required run-time memory space.

If the Gen program fails to execute normally for any reason, the ALIANT analysis
programs will not be allowed to execute.

Figure 4.1. ALIANT Prototype Requirements

Annotated
Grammar

Number of
Combinations
(user input)

APPEND

‘generate’

STATEMENT

GENERATE
COMBINATIONS

(gen.exe*)

STEP A
_______________ g-temp O U S
ANALYZE
NUMBER OF COMBINATIONS
COMBINATIONS (aliant_driver*)
I
Interactive Screen Output
lex_spec or or
Batch Input alnt_out

Figure 4.2. Executing ALIANT Prototype

4-8

afis.db Database file produced by ALIANT which contains a record for each selected
combination. Each record consists of a unique identification number and a bit array
indicating which features are included in the combination (Appendix F.4).

aliant.a ALIANT Ada source code (Appendix D.2).
aliant_driver.exex Executable ALIANT Ada code.
alnt_out Output file used when ALIANT is executed in batch mode (Appendix F.2).

<filename> User specified filename for batch input to ALIANT. It contains an entry per
line corresponding to the user prompts that will be generated for a specific batch
execution (Appendix F.2).

gen.exet Lxecutable C language Gen program.

gen_out lile containing output from Gen that is read in by the ALIANT analysis pro-
grams (Appendix F.4).

g-temp File used to build the input to Gen containing a copy of <root>.gen appended
with the user specified generation statement. After Gen execution is terminated,
this file is used to pass the user specified number of combinations to the ALIANT
analysis programs (Appendix F.4).

lex_spec Lex specification that is automatically generated by the mklspec specified pro-
gram. The program generated from lex.spec is called as a subroutine (yylex) from
the ALIANT analysis driver program (Appendix C.2).

mk_Ispec Lex specification and C driver program that is used to create the program
that generates the lex_spec Lex specification from the <root>.gen file. The program
specified by mk.Ispec extracts all Ada nonterminal symbols and pseudo-nonterminals
and formats the Lex specification that will identify expected characters and strings
output by Gen (Appendix C.3).

<root>.gen Input grammar for Gen (Appendix E).
runax Executable UNIX shell script used to run ALIANT (Appendix D.1).

yylex File containing the object code of the compiled C-program generated by Lex from
lex_spec. This object code is linked with the ALIANT Ada programs using pragma
interface (Appendix C.1).

Figure 4.3. ALIANT Prototype File Descriptions

4-9

WIS DU Y 17 SO R ey

code is provided in Appendix D.2. Figure 4.5 provides a tree structure diagram showing
the relationships of the various subprograms that make up the ALIANT Ada code. The
remainder of this section describes the iterative development of this final version of the

ALIANT prototype.

The initial ALIANT prototype was batch oriented with required parameters “hard-
coded” in the Parameter_Pkg specification. The first version did not have a Features_Pkg,
which will be described later. The Lex_Pkg contains the interface to the Y ylex lexical
analyzer program that returns integer values for each nonterminal or pseudo-nonterminal
found in the input file from Gen (see Appendix C for a full description of how Lex is used
in this prototype). The first prototype did not use the Opengen and Closegen routines
shown in Figure 4.4 since the output from Gen was being “piped” through the standard
input file. The Matrix Pkg provides encapsulation of the storage matrix that is used
to tabulate the feature occurrences in each combination. A two-dimensional matrix was
chosen for simplicity and speed. In this initial prototype, the maximum size of the matrix
was determined before compile time based on the expected number of combinations and
features that would be found. Although dynamic storage, using run-time allocated memory,
would have provided the most optimal use of memory and allowed growth “without bound”,
the speed factor was considered most important; and the use of extra memory for the
duration of the ALIANT exccution was not considered a problem for this data structure.
Figure 4.6 contains the descriptions of each of the major routines in the Matrix_Pkg which

show how the matrix is used and why high-speed access is desired.

The ALIANT Driver controls the operation of the ALIANT prototype. The following

pscudo- code describes the algorithm used to process the feature combinations produced by

4-10

MATRIX_PKG
(Combination-M atri:D

Initialize Matrix

Start-Combination

Count_Ieature

End_Combination

Display Matrix

Load.Database
LEX PKG
Yylex
Opergen
Closegen

-1 PARAMETER_PKG
(Max_Feat;ures)

(Max-Combinations)

Get.Max_Features

Get_Max_Comb.

——
FEATURES_PKG
@atures_ abla
Load._Features_Table
—tfy
Get_Features -

ALIANT Driver

| O ¢

Figure 4.4. ALJANT QGbjact-Oriented Description

4-11

ALIANT _|

Driver

Matrix Pkg
(declare part)

Features Pkg
(declare part)

— Opengen

— Yylex

| ALJANT
Wrapup

— Get Max Features

— Initialize Matrix
— Load Features Table

— Start Combination
— Count Feature
—- I'nd Combination

— Closegen

Matrix

_{: Get Max Features

—— Get Max Features

|__Load

Database

Get Max Combinations

4-12

| Display ___|

__Screen
Delay

— Get Feature

| Check
Paging

— Get User Input

Screen

Delay

Figure 4.5. ALIANT Structure Diagram

Get
User
Input

Initialize_Matrix This procedure simply zeros out the combination matrix. There are
no parameters.

Start_Combination This procedure increments counters and subscripts to start tabula-
tion for a new combination. There are no parameters.

Count_Feature This procedure increments the feature counter for the current combina-
tion being tabulated. An input parameter provides the feature number subscript for
the combination matrix, while the cuirent combination package variable provides the
other subscript.

End_Combination This procedure is called when the end of a combination is identified.
Tests are performed to determine if this combination is a “null” combination that
does not contain any features or is a duplicate of a previous combination. Two
combinations are duplicates if both corresponding feature counts are zero or non-zero
at the same time. If the current combination is in fact null or duplicate, appropriate
counters are incremented or decremented as necessary and the current row of the
combination matrix is zeroed out. The tests for duplicate combinations requires
comparisons between the current combination and all previous combinations. This
is where the speed factor is most important.

Display Matrix This procedure displays the contents of the combination matrix. The
initial prototype simply displayed the count totals for each feature number by combi-
nation. Additional features were added as described in later portions of this chapter.

Load_Database This procedure was added in later iterations of the ALIANT prototype.
If this option is chosen, ALIANT will output the selected combinations to a file in
“bit matrix” format, as described in the previous chapter.

Figure 4.6. Matrix _Pkg Procedure Descriptions

4-13

Gen. Note that this pseudo-code includes all features implemented in the final prototype,

some which haven’t been described yet.

begin ALIANT Driver
call Matrix_Pkg.Initialize_Matrix
call Features_Pkg.Load_Features_Table
call Lex_Pkg.0Opengen
call Lex_Pkg.Yylex (return Token)
while (not end of Gen input file) loop
case Token is
when feature token =>
call Matrix_Pkg.Count_Feature (send Token)
when start token =>
call Matrix_Pkg.Start_Combination
vhen end token =>
call Matrix_Pkg.End_Combination
when others =>
print error message
end case
call Lex_Pkg.Yylex (return Token)
end while loop
call Lex_Pkg.CloseGen
call Matrix_PKkg.Load_Database
end ALIANT Driver

The initial ALIANT prototype verified that the interfaces between the Gen program,
Lex subroutines and Ada analysis programs would work as expected. These preliminary
tests revealed a requirement to increase the size of an output buffer in the Gen software to
handle some of the larger test cases. Other than this minor adjustment, the Gen software

was not modified in any way to meet the requirements of ALIANT.

The initial prototype also revealed that the interface between the Yylex routine and
the Ada code required some unexpected modifications to the Yylex source code and the

Verdix Ada library. The Yylex routine is created using a utility program called Lex. As

4-14

LT e BT et o bt bt s B

PGS I SN VT

S TCIR ST ST S

described in Appendix C, the Lex specification for identifying Ada language features is
processed by the Lex program to generate a C program in a file called lex.yy.c. This file
is then compiled to make an executable routine by itself or to interface to other programs.
F;)r some unknown reason, Lex includes reference to a C subroutine that is not included in
lex.yy.c. When the object code generated from lex.yy.cis linked with the Ada programs, the
Ada loader generates an eiror message. To eliminate this error message, it was necessary
to manually remove the invalid reference from lex.yy.c before compiling it. The addition of
a link name in the Verdix Ada library was required to tell the Ada linker where to find the
Yylex object code. For the initial ALIANT prototype, the following process was developed

to establish the Yylex to Ada interface (see Figure 4.7 and Figure 4.8):

1. The Lex specification in lex_spec is used to produce the yylex source code in lex.yy.c
by executing the following commaad: “lex lex_spec”.

2. The C source code in lex yy.c is modified to remove the undefined reference to yywrap
(see Figure 4.9).

3. The modified C source code in lex.yy.c is compiled as follows to produce linkable
object code in lex.yy.o: “cc -c lex.yy.c”.

4. The file lex.vy.o is renamed yylex and the following entry is manually inserted into
the Verdix Ada ada.lib file: “WITH1:LINK:yylex:”. This entry tells the Ada linker
where to find the yylex program mentioned in the Lex_Pkg using pragma interface.

5. The compiled Ada packages and driver are linked together with the yylex routine
using the Verdix Ada command “a.ld aliant.driver -o aliant_driver.exe”. The output
name was arbitrarily chosen tc easily identify the executable driver file.

Having resolved the technical issues just mentioned, the next iteration of the ALIANT
prototype development led to the creation of the Feature,.Pkg. In the first prototype,
the Display Matrix procedure was just displaying the feature numbers and associated

count totals. To translate the feature numbers back into the more informative Ada

4-15

lex.spec

COMPILE

PROGRAM

CREATE

PROGRAM |—*
(Lex)

modified
lex.yy.c

lex.yy.o

RENAME
FILE

(manual)

Figure 4.7. Creating Yylex Object Code

lex.yy.c

MODIFY
LEX.YY.C

(manual)

yylex

ada.lib

aliant_driver*

aliant.a

MODIFY
LIBRARY

(manual)

LINK
Ada AND
yylex

COMPILE
Ada
PACKAGES

ade lib
(with link yylex)

yylex

Ada

object code

Figure 4.8. Creating Executable ALIANT .Driver

4-17

int yyleng; extern char yytextc[];
int yymorfg;
extern char *yysptr, yysbufl];

int yytchar; [sk dotoksok sk ok ok KRRk R ok ook ok kR sk kok Kook /
FILE *yyin, #yyout ={stdout}; /¥ REMOVED ‘={stdin}’ FROM yyin FOR ALIANT s**/
extern int yyneno; [HFk ok kR Rk R Rk R ok ook skokok ok /

struct yysve {

struct yywork *yystoff;

struct yysvf *yyother;

int *yystops;};

struct yysvi *yyestate;

extern struct yysvi yysvecll, *yybgin;

define YYNEWLINE 10

Jk Rk ARk ko kR ok ko sk sk ok ok ok oR ok kKR ok ook ok ARk sk ook AR KRR ok ok ok kb ok ok /
/*xxkkxxkxkxxx%%% ADDED opengen AND closegen FOR ALIANT #kkkakkkkkkdokkkkk/
[Aok koo ok ok sk ok sk ok kR KoK KoK Kok R sk ko kR ok ook ok
opengen(){

yyin = fopen("gen_out", "x");

}

closegen(){
fclose(yyin);
}

/***/

yyiex(){

int nstr; extern int yyprevious;
while({nstx = yylook()) >= 0)
yyfussy: switch(nstr){

case O: JAFRRAAKAIKRAA R KA KRR AR KRRk ks Aok dokokokkokok
return(0); break; /¥%x REMOVED ‘if(yywrap())’ FOR ALIANT #%*x/
case 1: /AR Rk AR AR KRk Ak ok ok ok ook ok
{ return(1); }
break;
case 2:
{ retura(2); }
break;

Figure 4.9. Modifications to lex.yy.c Program

nonterminal/pscudo-nonterminal symbols, a look-up table containing the desired infor-
mation is required. Rather than hard-code the table in the Ada source code, procedures
were added to read in the information directly from the Lex specification (lexspec) that
was used to create the Lex_Pkg.Yylex function. This method guarantees the look-up table
matches the feature tokens being returned by the Yylex function. Whenever a new lex.spec
and Yylex are generated, the Ada programs do not have to be recompiled; only re-linked

with the Yylex code. The Features_Pkg is deseribed in Figure 4.10.

Load_Features_Table This procedure extracts the nonterminal and pseudo-nonterminal
symbols from the lex.spec file and stores them in an array of character strings.

Get_Feature This function accepts a feature number as a parameter and returns the
corresponding feature character string from the features table.

Figure 4.10. Teatures_Pkg Procedure Descriptions

While developing the Features_Pkg, it became apparent that the creation of the
lexspec file (Appendix C.2) could be automated using another Lex specification. All
that was needed was a Lex specification that would recognize the format of nonterminal
and pseudo-nonterminal strings within the annotated grammar, and a driver program to
generate the lex_spec file. Appendix C.3 shows the resulting specification called mk Ispec.
Note that the C driver program is included in the same file to eliminate additional interface
requirements. The p1ocess ‘o create the lex_spec file is similar to the process used to create

the Yylex program from lex_spec (see Figure 4.11):

1. The Lex specification and main driver in mkJspec is used to produce the source code
in lex.yy.c by executing the following command: “lex mklspec”.

2. The C source code in lex.yy.c is compiled and linked as follows to produce an exe-
cutable stand-alone program in a.out*: “cc lex.yy.c -11”.

4-19

3. The lex.spec file is created by exccuting the following command: “a.out* < ada-
!
gen.gen > lexspec”. In this example, the annotated grammar in adagen.gen is
redirected as input to a.out* and the output from a.out* is redirected to lex_spec.

To further enhance the flexibility of the ALIANT prototype, and defer the declaration
of the combination matrix from compile time until run-time, methods were developed to
input the maximum number of features and maximum number of combinations during
program execution. The first way this was attempted was by adding interactive prompts
within the body of the Parameter.Pkg. Appropriate pragmas were used to make sure the
Parameter Pkg was claborated before any other compilation units that depended on it.
Therefore, the values input in the Parameter.Pkg body would be available in data structure
declarations throughout the ALIANT prototype. Unfortunately, this first attempt revealed
another technical issue that had to be resolved: how to explicitly open and close the Gen

output file.

The initial prototype’s use of piping to transfer the Gen output data into the
ALIANT Driver prevented the user from inputting information from the keyboard. The
alternative was to redirect the Gen output to a file that would be explicitly opened from
the ALIANT .Driver. This would “free-up” the standard input for interactive keyboard en-
tries. The eventual solution to this problem required further modifications to the lex.yy.c
file that was used to create the Yylex function. The following additional lex.yy.c modifi-
cations, plus the addition of Opengen and Closegen to the Lex_Pkg, solved the standard

input problem.

1. The previously modified C source code in lex.yy.c (generated from lex_spec) is further
modified as shown in Figure 4.9. The initialization of file yyin to s!.adard input is

4-20

ANNOTATE
Ada GRAMMAR |__, Annotated
Grammar Grammar
(manual)
CREATE
mkspec PROGRAM
(Lex)

GENERATE

LEX_SPEC

lex.yy.c

COMPILE
AND LINK a.out* lex.spec

PROGRAM

Figure 4.11. Creating lex_spec Lex Specification

4-21

changed so that yyin is uninitialized. Two subroutines, opengen and closegen, are
added just before the yylex procedure.

2. The lex.yy.c is compiled as before with “cc -c lex.yy.c” to produce lex.yy.o.

3. The file lex.yy.o is renamed yylex as before and relinked with the Ada programs.

The interactive capability allowed the user to input the number of features and
number of combinations at run-time, but a better method is to extract this information
automatically from other sources. The lessons learned in developing the Features.Pkg
were applied to the problem of getting the number of features without user input. By
using a similar technique as the Load Features.Table procedure, the Parameter _Pkg body
was modified to read in the lex_spec file to count the number of features. This technique
would further guarantee that the maximum number of features was synchronized with the
Yylex function and the Features_Table. To get the number of combinations automatically

required an interface file between the shell script and the Ada programs.

As described in the previous section on the Gen to ALIANT interface, the UNIX
shell script input was eventually developed to allow the user to input a parameter for the
number of Gen combinations to be generated. This enhancement led to an automatic
technique to input the maximum number of combinations. The number of combinations
that is used to generate the Gen test cases is passed to the ALIANT programs through
the g-temp file. Note that the maximum combinations parameter is used to declare the
size of the combination matrix. Therefore it should be as small as possible to contain the
expected number of “anique” combinations. For example, of 5000 combinations generated
using the Adagenl grammar in Appendix I.1, 2512 combinations were null, while 2296

combinations were duplicates. This leaves only 192 combinations that had to be stored in

4-22

. the combination matrix. In this example, the required space is only 4 percent of the total

number of combinations generated.

For very large test runs, the difference between the number of generated combina-
tions and the number that are actually put in the matrix can be considerable. Therefore,
the number in the g_temp file is much larger than the expected number of combinations
to be stored. By observing several test runs over a wide range of combination numbers, a
mathematical function was developed that calculates an approximation for the maximum
number of combinations. The calculation is based on the number input from g_temp. Ta-
ble 4.1 shows a comparison of the estimated versus actual number of stored combinations;
where 2 is the number input from g_-temp, and y is the estimate used to determine one
dimension of the :ombination matrix. Two different values of the coefficient ¢ are shown.
For the simple grammar shown in Appendix E.1, a coefficient of 17 is adequate. But for
the more complex Adagen2 grammar of Appendix E.2, in which there are no null combi-
nations generated, a coefficient of 1200 is required. Although the larger coefficient results
in “wasted” space for smaller numbers of combinations, it stili yields a significant space
savings for the larger numbers. Instead of developing a much more complicated function
calculation to obtain closer approximations for all values, the simple y =+/cz function
was adopted for demonstration purposes in this prototype. For this particular grammar,
the estimate is sufficient up to about 10,000 combinations. A grammar of different com-
plexity or larger numbers of combinations may require an increase in the z coeflicient to

make sure the combination matrix is large enongh,

With the introduction of the interactive capability, several new features were iter-

atively added as the ALIANT prototype evolved. The most significant of these added

4-23

Table 4.1. Estimated vs, Actual Number of Combinations

y=ex

g-temp c=17 Adagenl c= 1200 Adagen2
100 41 38 346 69
200 58 54 489 122
300 71 68 600 171
400 82 77 692 217
500 92 84 774 264
600 100 91 848 296
700 109 96 916 342
800 116 100 979 389
900 123 107 1039 433
1000 130 112 1095 480
2000 184 139 1549 827
3000 225 164 1897 1192
4000 260 178 2190 1521
5000 291 192 2449 1847
10000 412 218 3464 3452

4-24

features was the ability to specify thresholds for selective displaying/storing of the gen-
erated feature combinations. In response to on-screen prompts, the user of the ALIANT
prototype may choose to display/store feature combinations based on the number of du-
plicates each combination had and the number of features in each combination. The user
is prompted to enter the two threshold values that will be used to select the desired com-
binations. Any combination that has an equal or greater number of duplications as the
duplication threshold value, or an cqual or less number of features as the feature threshold,
is chosen for display or loading into the database. While in an ALIANT session, the user
may repeatedly try different threshold values to see how many combinations are chosen.
The number of combinations that satisfy the specified threshold values is displayed first.
Then the user is given the opportunity to view the combinations with or without on-screen
paging, or not at all. After the user is finished selecting/displaying combinations, he/she
may select combinations to be loaded into the AFIS database file. The thresholds are
used as before to select which combinations are output to the database file. If the batch
input option is used to execute an ALIANT session, the desired sequence of user inputs
is stored in an ASCII input file and redirected into ALIANT from within the UNIX shell
script. Appendix F gives detailed operating instructions and screen display examples of

the ALIANT prototype.

The ALIANT prototype expects several executable/data files to be available in the
same directory. In some cases, the versions of these files must also agree. For example,
the Yylex subroutine is generated for a particular set of features in an annotated grammar.
If the grammar is modified to include additional features, they will not be recognized as

valid, until a new Yylex program is generated. If certain files are missing, the standard

4-25

Ada run-time abort messages would not clearly indicate where the problem occurred.
Therefore, several exception conditions were identified and descriptive error messages were
developed to guide the user to the cause of some of the common problems that could arise.
In addition to the errors detected within the Ada programs, the UNIX shell script does
preliminary error checking of the input parameters to avoid unnecessary execution of the
ALIANT prototype. Figure 4.12 summarizes the types of errors that are detected by the

entire prototype.

This chapter presented a description of the iterative method used to develop the
ALIANT prototype. Initial versions helped confirm necessary interfaces would work. Later
versions added the full functionality described in the original design of the previous chapter.

The next chapter will analyze the operation of the ALIANT prototype.

4-26

Wrong number of input arguments If toc many, or too few, input arguwents are pro-
vided to the shell script, an error message is generated showing the proper input
format.

Non-existent filenames for input arguments [{a non-existent Gen input file or batch
input file is provided, an error message is generated by the shell script and execution
is terminated.

Invalid number of combinations If the argument ior the number of combinations to
generate is not greater than zero, the shell script generaies an error message and
terminates execution.

Gen program abort If the Gen program does not ‘terminate normaliy, the
ALIANT Driver is not allowed to execute. This prevents analysis of partial or non-
existent Gen ouiput.

Errors concerning the lex_spec file If the lexspec file is non-existent or the contents
do not match the expected formai, error niessages are generated from within the
ALIANT code. The lexspec file is opened during the inhvialization of the Parame-
ter.Pkg body and during the Load_Features Table execution. The generated error
messages indicate at which iocation the error occurred.

Errors concerning the g_temp file Although urnlikely, the g.temp file may contain er-
rors when it is opened by the ALIANT code. 1f so, error messages are generated for
a non-existent file or one in which the numbesr of combinations is not in the expected
forinat. Error messages are also generated if the nuinber of combinations exceeds the
predefined constraint range.

Too many generated combinations Since a function is used to caiculate the ezpected
matrix storage requirements, it is possible that the space will be exceeded. If this
happens, an errur message is generated before the partial matrix of combinations is
made available for user display.

Errors concerning the gen_ou! file If the format of the gen_out file from Gen has been
contaminated, an nrror message is generated. This error message is only generated
if a feature is identified befcre the start combination symbol is identified.

User input errors If the user inputs invalid threshold values, an error message is briefly
displayed un the screen and then another jnput prompt is provided. If the user inputs
come from a batch file, it i- possible the wrong number of inputs are provided and
an end-of-file condition will be teached on staudard input. If this occurs, a specific
error message is generated indicating the pussible cause.

Undefined feature token If a Gen input gramimnar is used that contains new features
that are not in the current Yylex routine, an informaftional error message will be
generated while the zombinations are analyzed.

Figure 4.12. ALIANT Prototype Error Detection

4-27

V. Test and Analysis

The purpose of this chapter is to analyze the results of ALIANT prototype testing.
First, the overall test objectives are presented. Then, the grammar test procedures are
described. Next, the test results, using two versions of the annotated Ada grammar, are
presented. The test data show how the degree of grammar complexity affects the number
and type of feature combinations the prototype produces. Finally, the results of error-
checking analysis are provided. This analysis verifies the prototype responds to error
conditions as designed; providing the user with an indication of how the problem can be

corrected.

5.1 Test Objectives

The primary objectives of ALIANT prototype testing are to

o Verify the prototype is correctly generating and identifying Ada feature combinations
according to the input annotated grammar.

o Gather performance statistics for ALIANT execution using two versions of a grammar
and a range of values for numbers of combinations, duplication thresholds, and featurc
thresholds.

¢ Verify the prototype error detection and message display features work as designed.

The first objective is not cxplicitly documented elsewhere in this chapter. Initial tests
were accomplished in which the Gen output was visually inspected to verify the proper
outpnt format. Other independent tests were used to confirm the randomness constructs
did produce the desired sclection of alternatives. For example, given a production in

which one allernative is to be chosen 30 percent of the time, the tests confirmed the

5-1

specified alternative did appear 30 percent of the time. The proportions were more accurate
for larger numbers cf generated combinations. Other tests were conducted to manually
compare the ALIANT processing statistics and seiected corubinations with the actual Gen
output. These tests confirmed the Ada code was correctly counting features, identifying

null and duplicate combinations, etc.

The second test objective was designed not only to gather data for later analysis,
but also to “stress test” the ALIANT prototype. By using grammar versions of different
complexity, and a wide range of combination number: and threshold values, any prototype
deficiencies should b uncovered. The values used for testing were designed to cover the
expected boundary values, as well as selected values in between. The maximum number of
combinations tested, 10000, was chosen somewhat arbitrarily due to the ALIANT execution
time and memory requirements. These larger test runs took over an hour to complete. The

chosen combination numbers were suflicient to establish clear trends for analysis.

The third test objective was satisfied by setting up a specific error condition for each
category of ALIANT error detection capability. The final section of this chapter presents

the results of these specific tests.

5.2 Grammar Test Selup

Two versions of an annotated Ada grammar were chosen for testing the ALIANT
prototype (see Appendix E). As described in the previous chapter, the first grammar
(Adagenl) is annotated very simply. Any productions that had terminal symbols on the
right hand sides were reduced to a character string in quotation marks. No weighting values

were assigned to any of the Gen randomness constructs, which made any alternative equally

likely in a given production. The second grammar (Adagen2) is more complex. This
grammar was annotated to allow the generation of more detailed feature combinations.
The 297 primary features used as a preliminary “filter” to the Program Analysis Tool
(PAT) were used as a guide in annotating the Adagen2 grammar (the primary features
were discussed in Chapter I). More realistic alternative probabilities were added to the
Gen randomness constructs to guide the generation of test cases. The added probabilities
were “more realistic” in the sense that more commonly used Ada features were given a
higher probability of occurring. The choices for the alternative probabilities are based on
the subjective judgement of the individual annotating the grammar. The use of objective

statistical data would result in the “most realistic” grammar annotation.

The testing process with these grammars was accomplished by using the ALIANT
batch input option. A batch file was set up to accumulate test data for 11 different pairs of
duplicate and feature threshold values. Recall that the duplicate threshold indicates the
minimum number of duplicates a cembination must have to qualify for selection, while the
feature threshold indicates the maximun number of features a combination can contain
to qualify for selection. The 11 test selections are shown in Table 5.1. The first five
selections, A through E, were designed to show how the number of combinations changed
by duplication threshold, while the feature threshold was constant. The feature threshold
was maintained at 100, to avoid eliminating combinations based on that factor, as the
duplication threshold was varied from 4 to 0. The next five test selections, F' through J,
were designed to show the cffect of changing the feature threshold value. The duplication
threshold of 0 made sure no combinations were eliminated due to that factor while the

feature threshold was varied from 50 to 10. The final test option, K, was chosen to

5-3

illustrate a selection of recommended feature combinations to test. This selection chooses
those combinations that have a duplicate count greater than or equal to 2, and a feature
count less than or equal to 20. In other words, a combination of 20 features that occurred
3 times would be selected; but a combination of 20 features that occurred only 2 times

would not be selected.

A UNIX shell script was created to execute the batch input for 15 different “numbers
of combinations”, ranging from 100 to 10000 combinations. In other words, the ALIANT
batch input file containing the appropriate user input entries for the 11 different pairs of
threshold values was executed first for 100 generated combinations, then 200 combina-
tions, and so on up to 10000 combinations (after 1000 combinations, the successive tests
increased 1000 combinations at a time). The shell script automatically moved the output
from “alnt.out” to a unique filename so the information from one test run would not be
overwritten by subsequent test runs. The resulting data for all test selections and input

combinations are presented in the following sections.

5.8 Adagenl Grammar Results

The tabulated test data for the Adagenl grammar is provided in Table 5.2. The first
column is the number of requested ccrmbinations input to the ALIANT prototype. The
next eleven columns, A through K, contain the number of combinations that satisfied each
pair of test selection criteria described in the previous section. The final three columns

contain the ALTANT summary totals for null, duplicate, and resulting combinations.

Since the numbers in columns E through J are constant, the data show that Adagenl

does not produce any combinations containing more than 10 features. If there was at least

5-4

et 4

ORI LT g0

Table 5.1. ALIANT Test Selection Options 1

TEST SELECTIONS

Selection Duplicate Threshold Feature Threshold ‘

A 100 ?z
100
100 Z
100
100
50
40
30
20

il e Al

et L Lt ol

10
20

=3
vicjlololo|olo = |V w |~

el o 0 sl

:

5-5

LUt A1) g ol b o, W B2 1 ol L et ¥t

Table 5.2. Adagenl Grammar Test Results

Adagenl Test Data

Test Selections

Comb A B C D E F G
100 1 2 4 11 38 38 38
200 5 9 14 19 54 54 54
300 7 13 20 36 68 68 68
400 12 17 24 43 77 7 77
500 17 21 30 49 84 84 84
600 18 24 37 56 91 91 91
700 21 26 43 59 96 96 96
800 23 33 48 62 100 100 100
900 25 35 50 66 107 107 07
1000 29 38 53 70 112 112 112
2000 53 63 77 98 139 139 139
3000 70 78 91 116 164 164 164
4000 80 93 107 128 178 178 178
5000 88 102 115 141 192 192 192
10000 122 131 158 182 218 218 218

Table 5.2. Adagenl Grammar Test Results (continued)

Adagenl Test Data (continued)

Test Selections Summary Totals
Comb H I J K Null Dup Res
100 38 38 38 4 43 19 38
200 54 54 54 14 95 51 54
300 68 68 68 20 140 92 68
400 7 77 77 24 194 129 77
500 84 84 84 30 243 173 84
600 91 91 91 37 293 216 91
700 96 96 96 43 349 255 96
800 100 100 100 48 398 302 100
900 107 107 107 50 444 349 107
1000 112 112 112 53 494 394 112
2000 139 139 139 77 1008 853 139
3000 164 164 164 91 1509 1327 164
4000 178 178 178 107 2011 1811 178
5000 192 192 192 115 2512 2296 192
10000 218 218 218 158 4972 4810 218

one combination with 11 features, the numbers in columns E through I would be one
greater than the number in column J. In fact, additional tests revealed the maximum
number of features per combination is 9. A visual examination of the Adagenl grammar
in Appendix E.1 confirms that only 9 features are produced by the following 21 “reachable”

productions:

subprogram_declaration = (subprogram_specification)
subprogram_specification = ("subprogram_specification ")
subprogram_body = { "subprogram_body ")
package_declaration = (package_specification)
package_specification = ("package_specification ")
package_body = ("package_body ")

use_clause = ("use_clause ")

compilation = ("START_COMPILATION: "

("™ | % compilation_unit more_units) ":END_COMPILATION \n")
more_units = (""" | % compilation_unit more_units)
compilation_unit = (

context_clause library_unit

| % context_clause secondary_unit)
library_unit = (

subprogram_declaration | % package_declaration

| % generic_leclaration | % generic_instantiation

! % subprogram_body)
secondary_unit = (library_unit_body | % subunit)
library_unit_body = { subprogram_body | % package_body)
context_clause = (

n | Y% (with_clause ("" | % use_clause more_use) context_clause))
more_use = ("" | % use_clause more_use)
with_clause = ("with_clause ")
subunit = ("subunit ")
generic_declaration = (generic_specification)
generic_specification = (

generic_formal_part subprogram_specification

| % generic_formal_part package_specification)
generic_formal_part = (“generic_formal_part ")
generic_instantiation = ("generic_instantiation ")

The “reachable” productions form a tree with the compilation production as the root and
the terminal productions as the leaves. Since a compilation is composed of zero or more

compilation_units, all 9 features can appear in a single combination.

The relative simplicity of Adagenl combinations is indicated by the fact that there
are only 218 different combinations produced from 10000 attempts. Figure 5.1 gives a
graphic illustration of what is happening as more and more combinations are generated.
The graph plots the ALIANT summary totals for null, duplicate, and resulting combina-
tions as well as selected combinations for a specified pair of threshold values. Selected
combinations are usually a subset of all the resulting combinations if the threshold values
are chosen properly. Note that a duplication threshold equal to zero, and a feature thresh-
old equal to the maximum number of features will guarantee all resulting combinations
are selected. The null and duplicate combinations are growing at a steep linear rate, while
the resulting combinations are increasing much slower. Theoretically, the resunlting combi-
nations should eventually reach a maximum or at least approach a maximum value. The
decreasing slope of the resulting combinations is an indication that such a maximum does
exist. The plotted slope of the selected combinations is decreasing as well. For the indi-
cated selection thresholds (Dup-2 Feature-20), the graph shows a much slower growth rate
for a subset of all generated combinations. The absolute maximum number of combina-
tions could be calculated, but the ALIANT prototype would spend a lot of time generating
mostly duplicates while attempting to exhaust all possibilities. For the rather simple Ada-
genl grammar, it is likely that exhaustive g 1eration of all possible feature combinations

could be achieved. Unfortunately, to be of any value to the ACVC testing effort, much more

5-9

complicated grammars must be annotated. The next section shows the corresponding test

results for the Adagen2 grammar.

Before presenting the Adagen2 testing results, an additional Adagenl demonstration
is provided. The output combinations produced by Adagenl can be reduced further by

modifying the compilation and more_units productions from this format:

compilation = ("START_COMPILATION: "
(" | % compilation_unit more_units) ":END_COMPILATION \n")
more_units = ("" |) compilation_unit more_units)

to this format:

compilation = ("START_COMPILATION: "
("™ | % 0 compilation_unit more_units) ':END_COMPILATION \n")

more_units = ("" | % 100 compilation_unit - ce_units)
The addition of the randomness percentages 0 and 100 as indicated cause the grammar to
generate one compilation_unit per combination. Figure 5.2 shows the resulting data for this
modified Adagenl grammar called “T-Adagenl”. Note that the duplicate combinations
continue to grow at a higher rate than before, while the resulting combinations reaches
a peak value very early. In this case, the grammar can only generate a maximum of 24
different compilation_units. This actual maximum for the 9 features of the 21 “reachable”
productions in T-Adagenl is much less than an easily calculated least upper bound of
511. The least upper bound is determined by calculating the number of combinations
of 9 features taken 1 at a time, 2 at a time, and co on up to 9 at a time. The sum of

these calculations, 511, is the least upper bound for this grammar. The reason the actual

5-10

Adagenl Summary Totals
2500 T i T T T T

2000 Null -©—

Duplicate ~—
Resulting oS
Dup-2 Feature-20 -X- -

1500

Gen.
Comb.

1000

500

0 500 1000 1500 2000 2500 3000
Requested Combinations

Figure 5.1. Adagenl Summary Totals Graph

5-11

3500

4t

maximum number of combinations is much less than the calculated upper bound is that
many of the calculated combinations are not possible in actual practice. For example, a

with.clause cannot appear alone in a combination.

5.4 Adagen2 Grammar Results

The tabulated test results for Adagen2 are provided in Table 5.3. The data is pre-
sented in the same manner as for Adagenl. The Adagen2 grammar did not generate any
null combinations since the randomness constructs were modified in the compilation pro-
duction. Rather than generate null combinations that ALIANT would only discard, the
Adagen2 grammar eliminated the zero option by using zero percent on the correspond-
ing alternative symbol. The elimination of null combinations causes many more resulting

combinations to be generated.

The added complexity of the Adagen2 grammar is apparcnt from the data in columns
F through J. The data in these columns indicate there are at least some combinations with
more than 50 features. Additional tests identified at least one combination with as many
as 67 features. Figure 5.3 shows the summary totals for the Adagen2 duplicate, resulting,
and selected combinations. The growth rate for all but the selected combinations (Dup-2
Feature-20) is much greater than what was noted for Adagenl. This indicates a theoretic
maximum is well beyond the reach of practicality, which was a premise for this research.
In other words, it is not practical to test all feature combinations. The growth rate for
the selected combinations is very similar to corresponding graph for Adagenl. The growth
rate for this selected subset of all Adagen2 combinations is much lower than the overall

rate.

2500

Gen,
Comb.

2000

1500

1000

500

T-Adagenl Summary Totals

Duplicate ©—
Resulting ——

)1 X i 11

0 500 1060 1500 2000 2500 3000

Requested Combinations

Figure 5.2. T-Adagenl Summary Totals Graph

5-13

3500

4000

Table 5.3. Adagen2 Grammar Test Results é
Adagen?2 Test Data §
Test Selections ‘ g
Comb | A B c D E F G Q
100 1 4 10 16 69 69 67 §
200 9 11 16 27 122 122 119 %
300 12 18 25 36 171 170 164 %
400 18 21 29 39 217 216 208 3
500 20 27 33 45 264 262 254)
600 26 31 39 47 296 294 285 %
700 20 | 34 | 43 | 51 | 342 | 339 | 328 \
800 30 35 46 57 389 386 373 §
900 32 37 50 66 433 430 416 %
1000 35 40 51 69 480 477 460 %
2000 56 65 83 120 827 817 790 §
3000 69 79 105 156 1192 1181 1133 %
4000 79 95 132 196 1521 1508 1438
5000 92 110 160 221 1847 1832 1748
10000 156 178 229 322 2452 3418 3247

5-14

o b Ll e R i W g M A | e o LI e L I W d i el AL e g b et B | bt A

{

Table 5.3. Adagen2 Grammar Test Results (continued)

Adagen2 Test Data (continued)

Test Selections Summary Totals

Comb H I J K Null Dup Res

100 62 47 43 10 0 31 69
200 106 81 68 16 78 122
300 147 111 92 25 0 129 171
400 187 146 121 29 0 183 217
500 227 174 144 33 0 236 264
600 251 190 155 39 0 304 296
700 281 214 171 43 0 358 342
800 321 243 191 46 0 411 389
900 354 269 211 50 0 467 433
1000 395 300 234 51 0 520 480
2000 675 498 377 83 0 1173 827
3000 965 705 522 105 0 1808 1192
4000 1207 853 606 132 0 2479 1521
5000 1466 1013 714 160 0 3153 1847
10000 2680 1773 1183 229 0 6548 3452

<t
1

—

[¥3 4

Adagen2 Summary Totals

- I ‘ | T T T T
T Null -
Duplicate 4—
Resulting e
Dup-2 Feature-20 -X- -
1500 - |
Gen.
Comb.
1000
500 -
0 o S

0 500 1000 1500 2000 2500 3000 3500 4000
Requested Combinations

Figure 5.3. Adagen2 Summary Totals Graph

5-16

As was done with Adagenl, a modified version of Adagen2 called “T-Adagen2” was
tested. This version of Adagen2 produces only one compilation_unit per combination.
Figure 5.4 shows the results. The resulting combinations are still growing at a much higher
rate than Adagenl. Even with the reduced complexity of each combination, the overall
grammar complexity still makes the maximum value impractical to reach. Note that the
original Adagen2 grammar already had the more_units alternative percentage set at 90
percent which caused the null alternative to be chosen 90 percent of the time. Therefore,
setting this value to 100 percent did not result in a dramatic change between Adagen2 and

T-Adagen2, as was noted between Adagenl and T-Adagenl.

5.5 Error Condilion Analysis

The normal operation of the ALIANT prototype was thoroughly tested while collect-
ing test data discussed so far in this chapter. Although some of the error-checking features
were verified during the course of this data collection, several special tests were required to
be sure all such features were “vorking properly. The purpose of this section is to present
the results of a series of tests that confirmed the prototype error-checking worked as ex-
pected. In each case, the method used to produce an error is described, followed by the

results of the induced error.

¢ Invalid parameters for runa shell script.
TEST 1: The runa shell script was invoked with no parameters.

RESULT: The following error message was displayed before the prototype was ter-
minated:

*

* Missing Gen filename and/or combinations argument(s), try again.
*

T-Adagen2 Summary Totals
2500 1 1 I I 1 1 I

2000

Duplicate <—
Resulting ~—

1500

Gern.
Comb.

1000

500

0 500 1000 1500 2000 2500 3000 3500 4060
Requested Combinations

L}

Figure 5.4. T-Adagen2 Summary Totals Graph

5-18

*~~=~ Poxmat: xuna® fni nun [fn2]
x-~~- RKhere : fnl.gen is the Gen input file,
e e ~~- num is the desired number of combinations, and

e e fn2 is an optional ALIANT batch input file.
*

TEST 2: A non-existent filename was provided for the Gen input file.

RESULT: The following error message was displayed before the prototype was ter-
minated:

*

* Gen Tilename provided does mot exist and/oxr numbe-:
* of combinatious provided not greatexr than 0, txy again.
#*

¢ Gen program abort.

TEST 3: The rune shell script wac invoked with valid parameters; but the Gen
executable file was not in the current directory. This test simulates any condition in
which the Gen software aborts before or during execution.

RESULT: The orerating system produced an error message and the shell script
terminated execution without running the ALIANT driver program.

~- Gen execution in progress --

gen.exex: No match.

o Errors concerning the lex_spec file.
TEST 4: The ALIANT prototype was executed with a non-existent lexspec file.

RESULT: The following error message was produced during execution of the Param-
eter_Pkg initialization. Note that an Ada runtime abort message was produced since
the ALIANT _Driver had not been elaborated yet. Normally, the ALIANT Driver
will replace the system message with au ALIANT terminating message.

<Parameter_Pkg body>

sxk NAME EXCEPTION ERROR RAISED WHILE #x
*xx TRYING TO OPEN LEX SPECIFICATION **x
*xx FILE. CHECK FILENAME IN PARAMETER %x
*x& PACKAGE AND CURRENT DIRECTORY. *okk

*x MAIN PROGRAM ABANDOHED -~ EXCEPTION "FATAL_EXCEPTIOMN" RAISED

TEST 3: The ALIANT prototype was executed with an empty lex_spec file. This
test simulates a condition in which the lexspec is present but contains format errors.
RESULT: The following error message was produced during execution of the Param-
eter Pkg initialization. As in the previous test, an Ada runtime abort message was
also produced.

<Parametexr_Pkg body>

*** PREMATURE END-OF-FILE REACHED WHILE **x
+% READING LEX SPECIFICATION FILE. Fokok
% CHECK FORMAT OF LEX SPECIFICATION. #xx

** MAIN PROGRAM ABANDONED -- EXCEPTION “FATAL_EXCEPTION" RAISED

o Errors concerning the g_temp file.

TEST 6: The ALIANT Driver is executed manually (without using the shell script)
with a non-existent g_temp file. This test demonstrates a condition that is unlikely
when using the shell script; but very likely if the ALIANT .Driver is used to process
a previously generated Gen output file.

RESULT: The fillowing error messages were produced before the prototype was
terminated:

<Parametex_Pkg body>

*xx NAME EXCEPTION ERROR RAISED WHILE #xx
»** TRYING TO OPEN THE GEN COMBINATION **x
»** FILE, CHECK FILENAME IN PARAMETER ##x*
»xx PACKAGE AND CURRENT DIRECTORY. Ak

*% MAIN PROGRAM ABANDONED -- EXCEPTION "FATAL_EXCEPTION" RAISED

TEST 7: The ALIANT Driver is executed manually with a null g_temp file.

RESULT: The following error messages were displayed before the prototype was
terminated:

<Parameter_Pkg body>

*#x PREMATURE END-OF-FILE REACHED WHILE **
**x READING GEN COMBINATION FILE. CHECK **x
x FORMAT OF GEN COMBINATION FILE. ok

**% MAIN PROGRAM ABANDONED -~ EXCEPTION "FATAL.EXCEPTION" RAISED

TEST 8: The ALIANT prototype was executed with a “number of combinations” pa-
rameter that was larger than the hard-coded Parameter_Type in the Parameter Pkg.

RESULT: The following messages were displayed before the pro*otype was termi-
nated:

<Parameter_Pkg body.2> 1
*%x NUMBER OF COMBINATIONS IS OUT OF kK :
x RANGE. CHECK GEN COMBINATION FILE AND *x*
»+* PARAMETER TYPE IN PARAMETER PACKAGE. **x

** MAIN PROGRAM ABANDONED ~~ EXCEPTION “FATAL.EXCEPTION" RAISED

¢ Too many generated combinations.

TEST 9: The ALIANT prototype was executed with a “number of combinations”
parameter that would cause the calculated Max_Combinations to be exceeded.

RESULT: The following message was displayed before the remaining ALIANT screen-
faces were presented.

5-20

<Matrix_Pkg.Start_Combination>
**x TOO MANY GEN COMBINATIONS. %*x
*x*x PARTIAL RESULTS FOLLOW. *kk

¢ Errors concerning the gen_out file.

TEST 10: The ALIANT prototype was executed manually with a gen_out file that
contained an error. The invalid gen_out file contained a valid feature but was missing
the “START_COMPILATION:” string.

RESULT: The following error messages were displayed before the prototype was
terminated:

<Matrix_Pkg.Count_Feature>
4 INCORRE(. FORMAT IN GEN INPUT #*x
*4% FILE. CHECK THE GEN GRAMMAR. **x*

e ok ok ke ok s e o ook ek ok ok ok 3 ok oK k3K ok ok ok sk ook ok ok ok 3 ko ok sk koK K ok ok

*% Exiting ALIANT driver due to fatal exception *x*
2K o o ke 2 ok ofe ok ok 3K ok o o K ok ok ok 3k ak ok 3k o ok 3k ok 3K e o 3k ok 3 o ok ke ok ok ok ok % oKk

User input errors.

TEST 11: During an interactive ALIANT execution, an invalid threshold value was
entered (non-natural number).

RESULT: The following error message was temporarily displayed on the screen before
the user innut prompt was redisplayed:

*% INVALID THRESHOLD VALUE -- MUST BE A NATURAL NUMBER *x*

TEST 12: The ALIANT prototype is executed with a batch input file that does not
contain enough entries for the input prompts that will be produced.

RESULT: The end of the alnt_out file contained the following error messages:
<Matrix_Pkg.Display_Matrix.1>
**x END-OF-FILE REACHED ON STD INPUT. **x*

*#*x PROBABLY INVALID ENTRIES IN THE #xx
*x*x ALTANT BATCH INPUT FILE (IF USED).*xx

Aok ook s o oo ok o o o 3 ko e ok o ik ok ok ok o ok ok ok ok ok ok ok ok ok ok oK ok ok K ok ko

*x Exiting ALIANT driver due to fatal exception **
HAERA RIS KA AR AAR AR AA KK AR ARAKK

Undefined feature token.

TEST 13: The ALIANT prototype is executed with a lex.spec file that does not
match the input grammar.

RESULT: The following error message was displayed each time an unknown character
string was identified.

** Undefined Token # 997, regenerate lex_spec file from input grammar. **

The results for all the error-checking tests are correct. In most czses, an error message
gives the user a suggestion how the error might be corrected. When such diagnosis is not
possible, the response is designed to prevent a user from receiving corrupted data. While
all possible errors cannot be detected, the most likely errors are detected and the user

notified.

The test results presented in this chapter have demonstrated the ALIANT prototype
is operating as designed. The next chapter will di: vuss how well the ALTANT prototype

satisfies the original requirements and offer recommendations for further research.

5-22

VI. Conclusions and Recommendations

The original requirement for the ALIANT prototype was to develop a system that
would automatically identify recomni.cnded Ada compiler test combinations. The scope was
limited to the identification of the recommended combinations of Ada features. There was
no attempt to generate compilable test cases containing the recommended combinations.
This chapter will discuss how well the ALIANT prototype meets the original requirement

and will make recommendations for further research in this area.

6.1 Research Conclusions

The ALIANT prototype can provide a valuable service to ACVC support personnel.
Using the Adagen2 grammar (Appendix E.2) as is, or with minor modifications, AMO
personnel can use the prototype to identify potential feature combinations to be tested.
Since the Adagen2 grammar is already annotated with virtually all of the 297 primary
features, the ALIANT prototype output can be interfaced with the existing Program Ana-
lyzer Tool (PAT). Since the duplication and feature threshold values are input at execution
time, the prototype gives the user the flexibility to try various selection criteria to obtajn

a reasonable subset of all generated combinations.

With nearly 300 primary features identified in the Ada grammar, it is a very difficult
task to identify which of these features are dependent on each other. The approach taken
in the ALIANT prototype is to generate hundreds, even thousands, of valid combinations
and selectively choose the combinations of interest. The basis for this selection still requires

the intuition of the compiler tester since he/she must determine how much duplication js

6-1

desired, and how many features are “enough”. Since it is not practical to test all possible
combinations of the language features, the ALIANT selection techniques are based on the
premise that combinations being generated repeatedly are more likely to occur in actual
use. This premise assumes a “realistically” annotated grammar is used to generate the
test combinations. Based on independent tests with the Gen software, it does appear that
combinations are being generated according the annotated probabilities. Only by replacing
the Gen software with a test case generator customized for ALIANT purposes could total
control of the generation process be achieved. Such a “production” version of ALIANT is

included as a recommendation for further research.

The testing and analysis presented in the previous chapter showed how various num-
bers of combinations were tested to illustrate the growth of prototype output. Due to the
way the Gen test case generator works, the resulting output is always repeatable. In other
words, running 1000 combinations now, and 1000 combinations an hour later, will resalt in
the same set of combinations being generated. Also, if the output from a 1000 combination
test run is compared with a 2000 combination test run, the first 1000 conibinations of the
latter test will match the combinations produced by the former test. Therefore, the only

way to get more variety in feature combinations is to run larger and larger test runs.

The development of the ALIANT prototype was made simpler due to several UNIX
operating system features. As described in Chapter IV, the use of a UNIX shell script and
redirection and piping features are essential to the operation of the ALIANT prototype.
These features reduced the amount of effort required to interface the “ofl-the-shel® Gen
software, “custom-built” Ada analysis programs, and the Lex support routines. 'L'he UNIX

environment, proved to be ideal for this prototyping effort.

6-2

L b o ATty

g s B b i e T

SR

A g S b e

IR

AL e

P TR ICE T YITC FETR L SRR TS BPPRULY S ARILI IR B2 FIC TR IR LA DY TR A0

BUR AT J LW P w L D

l_mu BLE A p W

The ALIANT prototype has demonstrated that automated support tools can be
used to generate recommended combinations for Ada compiler testing. The utility of the
generated combinations still depends on the skill and intuition of the compiler tester, but
the prototype makes it possible to analyze large amounts of data in a relatively short
time. Once the desired combinations are selected, the database output option allows the
information to be used directly by the remaining parts of Ada Features Identification
System (ATFIS). The ALIANT prototype is usable in its present form, although further

improvements may be possible by considering the recommendations that follow.

6.2 Recommendations for Further Research

The completion of the ALIANT prototype confirms the feasibility of automated sup-
port tools for generating recommended feature combinations. The optimal implementation
of a “production” version of ALIANT would require the entire prototype be developed in
a single language, such as Ada. Certain benefits in performance could be realized by elim-
inating the interfaces between the existing C code (Gen and Lex routines) and the Ada
code. Rather than generate thousands of combinations to select from, a production version
could be developed to only generate combinations that meet the desired selection criteria.
This method should reduce runtime and reduce memory requirements for the intermediate
Gen output file. By enhancing the functionality of the Gen portion of the prototype, it
may be possible to incorpor: te additional selection parameters that consider the nesting
levels and scope of various feature combinations. Such an implementation would also elimi-

nate the requirement for a UNIX shell script as a user interface. Before a production version

fu rcedaih A0 SN

AT e 0 A bl o o B B L N A el

is attempted, there are several areas that could benefit from additional prototype enhance-

ment and research.

The first area concerns the operation of the existing ALIANT prototype. During
the testing and analysis of the prototype, two potential capabilities were identified. The
first would allow the specification of a starting feature. Currently, the ALIANT prototype
generates a specified number of the compilation feature. Since the compilation is the
highest level feature in the Ada grammar, this produces combinations of some or all of
the lower level features. In certain cases, a compiler tester may want to focus on the
possible combinations of a lower level feature and generate, cwy, 1000 combinations of
package_specification. An enhancement to the ALIANT prototype would allow a user
specified “starting point” as another parameter. A default for this parameter could be the

compilation feature.

The second potential capability concerns the combination matrix. The execution time
for generating and tabulating extremely large numbers of combinations can be measured
in hours. Depending on the computer loading factor, a test run of 10000 combinations
usually takes over an hour. If the user knows ahead of time what threshold values are
desired, the ALIANT batch input works very well. On the other hand, if interactive “trial
and error” of various threshold options is desired, the prototype cannot be executed in
the background with a batch input file. Another enhancement to the existing prototype
would be additional options to save/load the combinations matrix to/from memory. This

would allow the prototype to generate the combinations matrix as a batch job for later

interactive analysis by the user.

RSN ASIN AT RS

(RESTS S LI N

The next recommended area for further research is grammar annotation. The gram-
mar annotation is a key step in the ALIANT prototype. Further research into other ;
annotation techniques may yield improvements in the selection/recommendation process.
The existing prototype uses duplication and feature counts as selectors. By adding addi-
tional embedded indicators in the annotated grammar, it may be possible to allow more
complex selection factors to be used. In addition to improvements in the grammar annota-
tion, research in this area may require modification of the Gen software to allow additional

annotations to direct the geaeration process. For example, it may be desirable to have

runtime counters to indicate the levels of the feature combinations being generated. This
would make it possible to specify a limit on the level, and thereby complexity, of the

generated test combinations.

ke LA AT T ¥ 1 BT Bt

A final recommendation for further research is to investigate the generation of com-

pilable test cases based on the recommended combinations. As it stands right now, the

kA tedlh w08 ettt

ALIANT prototype identifies combinations of Ada features to be tested. A user must then

EIRTEN

manually create test cases containing the specified Ada features. Each recommended com-

bination of Ada features can be used to generate many different test cases based on the

Mok AL dedt

valid permutations of the Ada features. In other words, the recommended combinations

do not specify the context in which the features are used. Further research is needed to

LTRSS E RS

NN INY

develop an automatic technique to generate compilable test cases from the recommended

S i

combinations.

R

2

AL

b
Z
4
4

6.3 A Final Word

This ALTANT prototype was developed independent of the on-going work on the
remaining components of AFIS. Now that the initial feasibility has been demonstrated, the
next logical step is to implement the interfaces between ALIANT and the other support
tools. The current database output option in ALIANT would have to be adjusted, as
necessary, to match the format required for the PAT. Once these minor adjustments have
been made, the AMO can begin using the prototype for improving the ACVC test suite. As
new grammar specifications are created for the next Ada standard, Ada 9X, the ALIANT
prototype will provide the means to identify new feature dependencies and recommend

new combinations for testing Ada compilers.

!
i ummmawm;wsz

AALIA L bt il Bt e G B Y S LI

U1 S

'

Appendix A. Gen - A Test Case Generalion Program

This appendix describes the Gen test case generation program which was developed
by Glenn Kasten, of Ready Systems, California (28). Althcugh it was created to test
assembler language programs, it can also be used for other language applications. Examples
in this appendix will demonstrate how Gen can be used to produce test cases for Ada

compilers.

A.1 Grammars

The input to Gen is a grammar which describes the possible sentences of a language.
The formal grammar for the Ada programming language is described in Appendix E of
the Ada Language Reference Manual (LRM) (16). This grammar provides the syntaz of
Ada using a Backus-Naur Form (BNT) format. The Ada grammar uses several special
characters (i.e., “:=", “]”, “{ }”, “[") and typefaces (i.e., boldface and normal) to define
valid language constructs. For example, the following Ada production defines the proper

syntax for an Ada case_statement:

case_statement ::=
case expression is
case.statement._alternative
{case_statement.alternative}
end case;
In the example above, the boldface words and the semicoion are terminals or ter-

minal symbols. A terminal symbol will appeur in a case statement exactly as shown in the

grammar production. The nonterminals or nonterminal symbols, such as “expression” and

A-1

“case_statement.alternative”, require further expansion by other productions in the Ada
grammar. In a contezt-free grammar such as Ada, each production has a single nontermi-
nal on the left-hand side of the symbol “::=". This symbol is equivalent to the phrases:
“is defined as”, “may be rewritten as”, or simply “equals”. Wherever the nonterminal
on the left-hand side of the equals symbol appears in a gramrar production, it can be
replaced by the terminals and nonterminals on the right-hand side of th. equals symbol.
Additional special purpose characters are used to describe the grammar options. These
symbols include the vertical bar “|” for alternatives, braces “{ }” to indicate zero or more
of the enclosed terminals/nonterminals, and brackets ‘[]” to indicate an optional part of

the grammar production.

A.2 Ada Grammar to Gen Grammar

The Gen grammar description constructs are slightly different than the BNT format
used in the Ada LRM. For example, the earlier case statement production appears as

follows when translated into the Gen input format:

case_statement = (

“ case” expression “is”
case.statement._alternative
more.alternatives

“end case;”

[

more_alternatives = (
«» I

case_statement.alternative more_alternatives

Note that the terminals are enclosed in quotes and the regular equals sign is used instead of

the “::=" symbol for each production. In addition to the implied productions that are not

A-2

A
e L E U L R e R i)
RITIR o

A M

AR g N e s K

i et

s g

LIca gt m

el b

shown for “expression” and “case_statement.alternative”, a production is required to model
the zero or more notation from the Ada BNF grammar. The production, more_alternatives,
allows either the null string or a case_statement_alternative followed by more_alternatives.
In other words, the production more_alternatives will generate zero or more occurrences of

case_statement.alternative.

This simple case_statement example shows how the Gen grammar productions are
formed. The following two sections provide the detailed rules for building Gen grammar

productions and adding randomness to production alternatives.

A.8 Building Rules

Each Gen grammar production must begin with a nonterminal symbol on the left
side of the equals sign. The right side of the equals sign is the rule that describes one
or more sentences in the language. The rules can be formed in any combination of the

following ways:

A rule is a nonterminal symbol.

A rule is a terminal enclosed in double quote marks.

A rule is two rules separated by a space (concatenation).

A rule is two rules separated by a vertical bar (alternation).

e A rule is a rule enclosed in parenthesis (grouping). (28:5)

To simplify the structure of rules, Gen provides several short hand notations:

o Alternation of Sets: The rule vowel = [aeiou)] is equivalent to

vowel = “a” | “e” | 41 | “0” | “u” and letter = [a-zA-Z] is equivalent to
listing all the letters individuaily within brackets.

A-3

o Optional Rule: The rule plural = ? “s” is the same as plural = « ? | “g” |

o Integer Range: The rule octal-byte = # 0 255 “% 030” describes all the octal
numbers between 0 and 255, printed with up to two leading zeros. The C language
print f string in quotes determines the output format of the generated integers. This
integer range example is equivalent to the following set notation method:

octal-byte = [0-3] [0-7] [0-7] (28:6)

In addition to the productions, an executable Gen grammar requires at least one
generation statement. A generation statement is simply a rule (the right hand side of a
production) on aline by itself. If the generation statement is omitted, Gen will not produce

any output.

A.4 Randomness Constructs

The percent-sign is used to add randomness to alternation rules. Consider the fol-

lowing production that will generate both A and B:

both —_ “A” | “B”

By adding the percent-sign after the alternation symbol, a new production is created

that will generate either A or B but never both:

either = “A” | % “B”

For alternation sets, the percent-sign is used to randomly select one character or integer
from the set. When used with the question-mark operator, the percent-sign causes a

random selection of the null string or the given rule. The following grammar would gencrate

a single random 4-letter or 6-letter word:

letter = [a-z]| %

word = letter letter letter letter 7 (letter letter) %

When the percent-sign is used after the alternate or question-mark operator it may
be weighted by an integer constant between 0 and 100. This constant determines the
percentage probability that the left side of the alternate operator or the given question-
mark rule will be chosen. For example, this version of the either production will generate

an A, 70 percent of the time and a B, 30 percent of the time:

either = “A” | % 70 “B”

And this version of the word production will generate 6-letter words 20 percent of the time

and 4-letter words 80 percent of the time:

letter = [a-2] %
word = letter letter letter letter ? (letter letter) % 290

A.5 Using the Test Case Generator

To demonstrate how Gen produces test cases from an input grammar, the previ-
ously described case_statement grammar productions are used. The following listing is an

executable Gen input grammar for the case_statement example.

case_statement = (

" case" expression " is"
case_statement_alternative
more_alternatives

" end case;"

A-5

)
expression = " Exp"
case_statement_alternative = " Case_Alter"

more_alternatives = (
" l

case_statement_alternative more_alternatives

case_statement

The only differences between this grammar and the previous Gen case_statement
grammar are the addition of the simplified productions for “expression” and
“case_statement_alternative” and the occurrence of the “casestatement” generation state-
ment. The generation statement tells Gen th> generate all the sentences described by the
casestatement production. The first few lines of the resulting output from Gen are pro-

vided below:

case Exp is Case_Alter end case;

case Exp is Case_Alter Case_Alter end case;

case Exp is Case_Alter Case_Alter Case_Alter end case;

case Exp is Case_Alter Case_Alter Case_Alter Case_Alter end case;

case Exp is Case_Alter Case_Alter Case_Alter Case_Alter Case_Alter end case;

Since the Gen grammar description for the casestatement can generate an infinite
number of sentences, Gen will produce test cases indefinitely. The abbreviated example
output above shows that Gen is adding a casestatement.alternative to each sentence to
generate the next sentence. To limit the generated sentences to a usable number, Gen
has randomness constructs. In cases where one or more alternatives are offered, the ran-

domness constructs cause the test case generator to randomly choose between the alterna-

A-6

A

b

b

fealb

AR b At

et

e,

1L

A0S LAY A SN AL S o

P irn b M A b ek s P B0 B 02 e PRI U i b B

Hr Ve B LS

faah b SN Yt

tives rather than exploring all possible alternative combinations. For example, using the

4 Y U L

casestatement grammar, randomness can be added to the more_alternatives production ¥

to limit the number of combinations gencrated. The modified grammar below includes the

“% 60” randomness construct that tells the test case generator to select the null string 60

St

percent of the time.

case_statement = (E
" case" expression " is"

case_statement_alternative :
more_alternatives 3

" end case;" 3

b

)]

expression = " Exp"

Lo, e K

case_statement_alternative = ' Case_Alter”
.
more_alternatives = (i
" l % 60 i
case_statement_alternative more_alternatives %
‘
* 15 case.statement §
:
The percent-sign operator can drastically reduce the number of alternatives that are chosen.
In order to generate enough test cases, the asterisk operator may be used as shown above 3

e L

to repeat the same rule, In this example, 15 case.statement sentences will be generatec.

Without the asterisk operstor, Gen would stop generating test cases as soon as the null

Henrha g A L BN T,

string alternative is chosen, resulting in a single test case being generated. The output

below shows how the randomness construct changes the types and number of sentences

produced:

A-7 :

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp
Exp

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

Case_Alter
Case_Alter
Case_Alter
Case_Alter
Case_Alter
Case_Alter
Case_Alter
Case_Alter
Case_Alter
Case_Alter
Case_Alter
Case_Alter
Case_Alter
Case_Alter
Case_Alter

end case;

end case;

end case;

end case;

end case;

Case_Alter end case;
end case;

Case_Alter end case;
end case;

end case;

end case;

end case;

Case_Alter end case;
Case_Alter Case_Alter end case;
end case;

Since the internal random generation function within Gen always begins from a fixed

“seed” or starting point, the 15 test cases above could not be obtained by 15 independent

executions of the given grammar. If this method were used, the output would be 15 copies

of the first test case in the listing above. Only by using the asterisk rule can the full benefit

of randomness constructs be obtained.

A-8

Appendix B. ACVC Test Class Ezamples

The ACVC test suite contains over 4000 legal and illegal Ada test programs divided
into six test classes: A, B, C, D, E, and L. Classes A, C, D, and E are executable and use
additional utility programs to report test results during execution. The Class B tests are
illegal Ada programs that should generate compilation errors. Class L tests should produce
compilation or link time errors due to the way the Ada program libraries are used at link
time. This appendix provides an example of each test class and a corresponding sample
test result from the Verdix Ada compiler. Examples of the utility support programs for

reporting executable {est results are also provided.

B.1 Report Utility Package

The following package specification shows some of the utility programs used within
executable test cases to report test results. Procedure calls are made to these routines to

print out the test case being executed and its corresponding pass/fail status.

== REPSPEC.ADA

-- PURPOSE:

-~ THIS REPORT PACKAGE PROVIDES THE MECHANISM FOR REPORTING THE
- PASS/FAIL/NOT-APPLICABLE RESULTS OF EXECUTABLE (CLASSES 4, C,
- D, E, AND L) TESTS.

- IT ALSO PROVIDES THE MECHANISM FOR GUARANTEEING THAT CERTAIN
- VALUES BECOME DYNAMIC (NOT KNOWN AT COMPILE-TIME).

~= HISTORY:

- JRK 12/13/79
- JRK 06/10/80
-- JRK 08/06/81
-- JRK 10/27/82
- JRK 06/01/84

B-1

LN kAL 4D P VE ISy 112 BT R U e e

L e, 48 W it g ol

W el

s 4

T TN

ARy

- PWE 07/30/87 ADDED PROCEDURE SPECIAL_ACTION.
- TBN 08/20/87 ADDED FUNCTION LEGAL_FILE_NAME.

PACKAGE REPORT IS

SUBTYPE FILE_NUM IS INTEGER RANGE 1..3;

-~ THE REPORT ROUTINES.

PROCEDURE TEST

(NAME : STRING;
DESCR : STRING

Y
i

PROCEDURFE. FAILED

(DESCR : STRING

}H

PROCEDURE NOT_APPLICABLE

(DESCR : STRING

);

PROCEDURE SPECIAL_ACTION

(DESCR : STRING
):

PROCEDURE COMMENT
(DESCR : STRING
);

PROCEDURE RESULT;

THIS ROUTINE MUST BE INVOKED AT THE
START OF A TEST, BEFORE ANY OF THE
OTHER REPORT ROUTINES ARE INVOKED.

IT SAVES THE TEST NAME AND OUTPUTS THE
NAME AND DESCRIPTION.

TEST NAME, E.G., "C23001A-AB".

BRIEF DESCRIPTION OF TEST, E.G.,
"UPPER/LOWER CASE EQUIVALENCE IN " &
"IDENTIFIERS".

OUTPUT A FAILURE MESSAGE. SHOULD BE
INVOKED SEPARATELY TO REPORT THE
FAILURE OF EACH SUBTEST WITHIN A TEST.
BRIEF DESCRIPTION OF WHAT FAILED.
SHOULD BE PHRASED AS:

"(FAILED BECAUSE) ...REASON...".

OUTPUT A NOT-APPLICABLE MESSAGE.
SHOULD BE INVOKED SEPARATELY TO REPORT
THE NON~APPLICABILITY OF EACH SUBTEST
WITHIN A TEST.

BRIEF DESCRIPTION OF WHAT IS
NOT-APPLICABLE. SHOULD BE PHRASED AS:

" (NOT-APPLICABLE BECAUSE)...REASON...",

OUTPUT A MESSAGE DESCRIBING SPECIAL
ACTIONS TO BE TAKEN.

SHOULD BE INVOKED SEPARATELY TO GIVE
EACH SPECIAL ACTION.

BRIEF DESCRIPTION OF ACTION TO BE
TAKEN.

OUTPUT A COMMENT MESSAGE.
THE MESSAGE.

THIS ROUTINE MUST BE INVOKED AT THE
END OF A TEST. IT OUTPUTS A MESSAGE
INDICATING WHETHER THE TEST AS A
WHOLE HAS PASSED, FAILED, IS
NOT-APPLICABLE, OR HAS TENTATIVELY
PASSED PENDING SPECIAL ACTIONS.

B-2

SEhg

UPTIS TR NS WL 2%

et

ERLY SN . B T

-~ THE DYNAMIC VALUE ROUTINES.

~- EVEN WITH STATIC ARGUMENTS, THESE FUNCTIONS WILL HAVE DYNAMIC

-~ RESULTS.

FUNCTION IDENT_INT
(X : INTEGER
) RETURN INTEGER;

FUNCTION IDENT_CHAR

(X : CHARACTER
) RETURN CHARACTER;

FUNCTION IDENT_BOOL
(X : BOOLEAN
) RETURN BOOLEAN;

FUNCTION IDENT_STR
(X : STRING
) RETURN STRING;
FUNCTION EQUAL

(X, Y : INTEGER
) RETURN BOOLEAN;

-= OTHER UTILITY ROUTINES.

FUNCTION LEGAL_FILE_NAME

(X : FILE_NUM := 1;
NAM : STRING := "¢
) RETURN STRING;

AN IDENTITY FUNCTION FOR TYPE INTEGER.
THE ARGUMENT.
X,

AN IDENTITY FUNCTION FOR TYPE
CHARACTER.

THE ARGUMENT.

X.

AN IDENTITY FUNCTTON FOR TYPE BOOLEAN.
THE ARGUMENT.
X.

AN IDENTITY FUNCTION FOR TYPE STRING.
THE ARGUMENT.
X.

A RECURSIVE EQUALITY FUNCTION FOR TYPE
INTEGER.

THE ARGUMENTS.

X=Y.

A FUNCTION TO GENERATE LEGAL EXTERNAL
FILE N"™ES.

DETERM:4ES FIRST CHARACTER OF NAME.
DETERM1NES REST OF NAME.

THE GENERATED NAME.

END REPORT;

B.2 Class A Test Ezample

A Class A test is designed to compile successfully. As the following example shows,
the execution of the test code will not do anything significant other than call the RESULT

report procedure to indicate a successful test.

=~ A21001A.ADA

== CHECK THAT THE BASIC CHARACTER SET IS ACCEPTED
== OUTSIDE OF STRING LITERALS AND COMMENTS.

B-3

LB OHE MR Se gl AU b W B T T SR O BT B W ST e B bt Sl L b IR S A s B ety U e B e W e LB N e 0 e e e e LT M o Ll R 2 e W L a3 i i et N 2T BT b B R P e AL B e v A e "_n'd“”\‘J

)

-- DCB 1/22/80

WITH REPORT;
PROCEDURE A21001A IS

USE REPORT;

BEGIN
TEST ("A21001A", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED");

DECLARE

TYPE TABLE IS ARRAY (1..10) OF INTEGER;
A:TABLE:=(2]14110=>1,1]3]5..9=>0) ;
~-~USEOF: ()1,

TYPE BUFFER IS
RECORD
LENGTH : INTEGER;
POS : INTEGER;
IMAGE : INTEGER;

END RECORD; -- USED TO TEST . LATER
R1 : BUFFER;
ABCDEFGHIJKIM : INTEGER; -~ USEOFABCDEFGHIJKLM
NOPQRSTUVWXYZ : INTEGER; -~USEOFNOPQRSTUVWXYZ
21234567890 : INTEGER; ~-~USEOF _ 1234567890

I, I2, I3 : INTEGER;

C1, €2 : STRING (1..6);

€3 : STRING (1..12);
BEGIN

I1:=2*(3-1+2)/2;I2:=8; —-—USES () »x+-/;

C1 := "ABCDEF" ; -- USE OF *
C2 := C1;
C1 := "ABCDEF" ; -- USE OF "
C2 := Ci;
C3 :=C1 & C2 ; -- USE OF &
T2 := 16#D#; -~ USE OF #
I3 := A’LAST; -~ USE OF °
R1.P0OS := 3; -- USE OF .
IF T1 > 2 AND

Ii =4 AND

Ii1 < 8 THEN -- USE OF > = <

NULL;

END IF;

B-4

END;

RESULT;
END A210014;

The following output shows that the test case compiles successfully:

Elx:i Verdix Ada Compiler, Copyright 1284, 1985, 1986, 1987
Version 5.5 - ELXSI UNIX VADS

File: /en0/gcs80d/jmarx/adadir/atest.a
compiled Mon Jun 18 11:18:59 1990

by user jmarr

unit: subprogram body a21001a
NO Ada ERRORS UNIT ENTERED

31 statements 64 lines

optimization pass 1 a21001a..NLSB
102 IL instructions in
71 IL instructions out

When the test case is executed, the following output is produced:

---- A21001A CHECK THAT BASIC CHARACTER SET IS ACCEPTED.
=== A21001A PASSED

B.3 Class B Test Example

A Class B test case is designed to produce compilation errors. A Class B test case is
passed if every illegal construct is detected at compile time. Note that this test case includes
a parameter ($BT.ANKS) that is used to customize this test case to implementations using

fixed length input lines.

B22001A.TST

CHECK THAT AN IDENTIFIER, RESERVED WORD, COMPOUND SYMBOL,
INTEGER LITERAL, CHARACTER LITERAL, STRING LITERAL, OR COMMENT
CANNOT BE CONTINUED ACROSS A LINE BOUNDARY.

FOR IMPLEMENTATIONS THAT USE FIXED LENGTH INPUT LINES,

ADDITIONAL BLANKS MUST NOT BE ADDED TO THE END OF THOSE LINES
THAT TRY TO FORCE A LEXICAL 10KEN ACROSS A LINE BOUNDARY.

THUS, SUFFICIENT (I.E., MAX_IN_LEN - 20) BLANKS ARE MACRO EXPANDED
AT 'THE START OF THOSE PARTICULAR LINES SO AS TO BRING THE

LINE LENGTH UP TO THE MAXIMUM ALLOWED INPUT LINE LENGTH.

IDENTIFIER CROSSES LINE BOUNDARY.
DCB 12/18/79

JRK 4/21/80
JRK 12/16/80

PROCEDURE B22001A IS

TYPE INTE IS NEW INTEGER;
I : INTEGER;

EX : INTEGER;

I1 : INTEGER;

Bi : BOOLEAN;

C1 : CHARACTER;

S1 : STRING (1..6);

$BLANKS INT1 : INTE
GER; -- ERROR: IDENTIFIER CROSSES LINE BOUNDARY.

I2 : INTEGEL;
I3 : INTEGER;

BEGIN

NULL;

WHILE FALSE LOOP
NULL;

END LOOP;

END B220014;

The following output shows that the compiler does detect the intended error:

Elxsi Verdix Ada Compilexr, Copyright 1984, 1985, 1986, 1987
Version 5.5 - ELXSI UNIX VADS

File: /en0/gcs90d/jmarr/adadir/btest.a

compiled Mon Jun 18 11:20:00 1990

i AN L N

AN N b S el

S bl e

LM A Mt B 1 i | SRS I S D3 g I AT 2 e Ly e e VI Y 2 R A B £ u Y W B S

LA S

[ORSE]

Ik A

by user jmarr

unit: subprogram subunit b22001a
1 SYNTAX ERROR UNIT UNCHANGED

14 statements 43 lines
RO ROk kR Dtest.a kiR iiokkkiokk kkk ok ok R ek kKoK

30:GER; -~ ERROR: IDENTIFIER CROSSES LINE BOUNDARY.
R
A:syntax error: "ger" deleted

B.4 Class C Test Ezample

A Class C test case is designed to check the run time system. These test cases include
code that must compile and execute successfully. If the code does not execute as expected,

a procedure call is made to the utility program FAILED to print out an error message.

1

C23001A.ADA

CHECK THAT UPPER AND LOWER CASE LETTERS ARE EQUIVALENT IN IDENTIFIERS
(INCLUDING RESERVED WORDS).

]
1

JRK 12/12/79
JWC 6/28/85 RENAMED TO ~AB

WITH REPORT;
PROCEDURE €23001A IS

USE REPORT;
AN_IDENTIFIER : INTEGER := 1;

BEGIN
TEST ("C23001A", "UPPER/LOWER CASE EQUIVALENCE IN IDENTIFIERS");

DECLARE

an_identifier : INTEGER := 3;
BECIN

IF an_identifier /= AN_IDENTIFIER THEN

FALLED ("LOWER CASE NOT EQUIVALEWT TO UPPER " &
"I¥ DECLARABLE IDENTIFIERS");

END IF;

ERD;

IF An_YdEnTIfieR /= AN_IDENTIFIER THEN
FAILED ("MIXED CASE NOT EQULVALENT TO UPPER IN “ &
"DECLARABLE IDENTIFIERS");
END IF;

if AN_IDENTIFIER = 1 ThEn
AN_IDENTIFIER := 2;
END IF;
IF AN_IDENTIFIER /= 2 THEN
FAILED ("LOWER AND/OR MIXED CASE NUT EQUIVALENT TO " &
"UPPER IN RESERVED WORDS");
END IF;

RESULT;
END C230014A;

The following output shows that the Class C test compiles successfully:

Elxsi Verdix Ada Compiler, Copyright 1984, 1985, 1986, 1987
Version 5.5 - ELXSI UNIX VADS

File: /en0/gcs90d/jmarr/adadir/ctest.a
compiled Mon Jun 18 11:20:12 1990
by user jmarr

unit: subprogram body c23001a
NO Ada ERRORS UNIT ENTERED

16 statements 43 lines
Aok Rk Ok RO kR KRk oRR ctest.a Rk Rk T kAR Ok ROk KKKk

20: an_identifier : INTEGER := 3;
A -
A:warning: id hides outexr definition
optimization pass 1 c23001a..NLSB
78 IL instructions in
62 IL instructions out

When the test cas2 is executed, the following output is produced:

--== (230014 UPPE

U ENCE IN IDENTIFIERS.
==== (23001A F ."SE

o N
o~
§3
=
-]
(]
=
w
5]
3
L2
G
4
<2
s
£
b1

bl

B.5 Class D Test Ezample

A Class D test case checks the compilation and execution capacities of a compiler.
Since most capacity limits are not specified by the Ada language standard, a valid compiler
may be classified as inapplicable if a Class D test fails to compile because the capacity of

the compiler is exceeded.

]

D55A03A.ADA

CHECK THAT AN ARBITRARY LEVEL OF LOOP NESTING IS PERMITTED.

1

CHECK 7 LEVELS OF LOOP NESTING.

ASL 8/06/81
RM 6/28/82
RM 7/06/82
SPS 3/1/83

1
]

WITH REPORT;
PROCEDURE D55A03A IS

USE REPORT;

X : INTEGER := 1;

COUNT : INTEGER := 0;

DESCENDING : BOOLEAN := IDENT_BOOL(TRUE);
BEGIN

TEST ("D55A03A","7 LEVELS OF LOOP NESTING");

FOR I IN X..IDENT_INT(1) LOOP

WHILE DESCENDING LOOP

LOOP

EXIT WHEN NOT DESCENDING ;

FOR I IN X..IDENT_INT(1) LOOP

WHILE DESCENDING LOOP

LOOP

EXIT WHEN NOT DESCENDING ;

FOR I IN X..IDENT_INT(i) LOOP

COUNT := COUNT + 1;

DESCENDING := IDENT_BOOL(FALSE);
END LOOP;
END LOOP;
END LOOP;
END LOOP;
END LOOP;
END LOOP;
END LOOP;

IF COUNT /= 1 THEN

FAILED ("LOOPS NOT EXECUTED PROPER NUMBER OF TIMES");
END IF;
RESULT;

END D55A034;

The following output shows the results of a successful compilation of this Class D

test:

Elxsi Verdix Ada Compiler, Copyright 1984, 1985, 1986, 1987
Version 5.5 - ELXSI UNIX VADS

File: /en0/gcs90d/jmarr/adadir/dtest.a
compiled Mon Jun 18 11:25:03 1990

by user jmarr

unit: subprogram body d55a03a
NO Ada ERRORS UNIT ENTERED

21 statements 56 lines
Rk Rk Rkl R ok Rk kR dEest.a kil kokkoRk Rk kR RRok KKK KKk Kk kX
33: FOR I IN X..IDENT_INT(1) LOOP

A:warning: id hides outer definition
38: FOR I IN X..IDENT_INT(1) LOOP

A:varning: id hides outer definition
optimization pass 1 d55a03a..NLSB
i76 IL instructions in
132 IL instructions out

B-10

When the test is executed, the following output is produced:

---~ D565A03A 7 LEVELS OF LOOP NESTING.

==== D55A03A PASSED . é
E

B.6 Class E Test Ezample 7
A Class T test is designed to check implementation-dependent options. Like a Class ;

i

D test, a Class E test may be inapplicable to a certain compiler implementation. ‘
PRAGMA SYSTEM_NAME (NOBODY); §
PRAGMA MEMORY_SIZE (ONE); 1
PRAGMA STORAGE_UNIT (TWO); ;
-~ E28002A.ADA §
-- OBJECTIVE: E
- CHECK THAT A PREDEFINED OR AN UNRECOGNIZED PRAGMA MAY HAVE 3
- ARGUMENTS INVOLVING IDENTIFIERS THAT ARE NOT VISIBLE. p
E

- THESE PRAGMAS ARE IMPROPER, BUT THEY ARE LEGAL STATEMENTS =
- THAT MUST BE IGNORED BY THE COMPILER. E
-~ PASS/FAIL CRITERTIA: E
- 1) THE TEST MUST EXECUTE AND REPORT "TENTATIVELY PASSED"; 3
- 2) THE COMMENT CONTAINING "##x MUST APPEAR #*%" MUST APPEAR IN]
- THE COMPILATION LISTING; ;
- 3) THE TWO COMMENTS CONTAINING "s*x SAME PAGE ***" MUST APPEAR ON 3
_— THE SAME PAGE. .
-- HISTORY: %
- TBN 02/21/86 CREATED ORIGINAL TEST. 3
- JET 01/13/88 ADDED CALLS TO SPEC_ACT AND UPDATED HEADER FORMAT. ‘
- DHH 03/02/89 ADDED PRAGMA PAGE BEFORE PRAGMA PAGE(ONE). g
3

WITH REPORT; USE REPORT; :
PRAGMA ELABORATE (2222227Z_27Z); 3

PROCEDURE E28002A IS

PRAGMA OPTIMIZE (WHAT);

PRAGMA PRIORITY (ONE);

PRAGMA CONTROLLED (OPTIMIZE);
PRAGMA SHARED (GLOBAL_MONEY);
PRAGMA INTERFACE (FORTRAN, FUN);

B-11

PRAGMA INLINE (XYZ);

PRAGMA PACK (CHAR_TYPE);

PRAGMA SUPPRESS (MONEY, INTEGER);
PRAGMA PHIL_BRASHEAR (ONE);
MY_INT : INTEGER;

BEGIN
TEST ("E28002A", "CHECK THAT A PREDEFINED OR AN UNRECOGNIZED " &
"PRAGMA MAY HAVE ARGUMENTS INVOLVING " &
"IDENTIFIERS THAT ARE NOT VISIBLE");
PRAGMA LIST (NEXT);
THIS COMMENT *** MUST APPEAR *%x,
SPECIAL_ACTION ("CHECK LISTING FOR COMMENT ""sxx MUST APPEAR " &
n***lmu) H
PRAGMA ROSA_WILLIAMS (TWO);
PRAGMA THOMAS_NORRIS (THREE);
PRAGMA PAGE;
PRAGMA PAGE (ONE);
THIS COMMENT MUST BE ON THE #xx SAME PAGE *** AS THE NEXT COMMENT.
PRAGMA PAGE (FOUR);
THIS COMMENT MUST BE ON THE **x SAME PAGE xx» AS THE PRECEDING
~- COMMENT.
SPECIAL_ACTION ("CHECK THAT COMMENTS ''"#x*% SAME PAGE #xx"t " g
“ARE ON THE SAME PAGE OF THE LISTING");

RESULT;

END E280024;

“he following output shows that the Class E test does compile successfully:

(Although several warnings are generated)

Elxsi Vexdix Ada Compiler, Copyright 1984, 1985, 1986, 1987
Version 5.5 ~ ELXSI UNIX VADS

File: /en0/gcs90d/ jmarr/adadir/etest.a
compiled Mon Jun 18 11:29:10 1990
by user jmarr

unit: subprogram body ¢28002a
NO Ada ERRORS UNIT ENTERED

27 statements 62 lines
Sk kRO etest. @ kmkkkokiokohkkiorkacksk ok Rk Rk Ak KKK

1:PRAGMA SYSTEM_NAME (NOBODY);

PR

A:warning: RM 13.7(11) System can be altered only by direct recompilation
2:PRAGMA MEMORY_SIZE (ONE);

JRp—

B-12

B - -

A:warning: RM 13.7(11) System can be altexred only by direct recvmpilation

B:wnxrning: RM Appendix B: pragma argument must be a numeric literal
2:PRAGMA STORAGE_UNIT (TWO);

PR

5 -

< werning: RM 13.7(11) System can be altered only by direct recompilation
3.varning: RM Appendix B: pragma argument must be a numeric literal
27:PRAGMA ELABORATE (2ZZ222Z_.7227);

A - -

h:warning: RM B(3): doesn’t name WITH’d unit.
3L PRAGHA OPTIMIZE (WHAT);

A

\:wvarning: RM Appendix B: incorrect pragma argument identifier
a2: PRAGMA PRIORITY (ONE);

P -

A:w~rning: RM 13.7: SYSTEM is not available
33: PRAGMA CONTROLLED (OPTIMIZE);

A

A:varning: RM 8.3: identifier undefined
34: PRAGMA SHARED (GLOBAL_MONEY);

A === "

A:warning: RM 8.3: identifier undefined

A:warning: RM 9.11(10): argument must be a variable
35: PRAGMA INTERFACE (FORTRAN, FUN);

A -

A:warning: RM 8.3: identifier undefined
A:warning: RM 13.9: not a subprogram name
36: PRAGMA INLINE (XYZ);

A

A:warning: RM 6.3.2(3): must name a subprogram in the current declarative part
37 PRAGMA PACK (CHAR_TYPE);

A
A:warning: RM 8.3: identifier undefined
38: PRAGMA SUPPRESS (MONEY, INTEGER);

A

A:warning: RM Appendix B: incorrect pragma argument identifier
39: PRAGMA PHIL_BRASHEAR (ONE);

A:warning: RM Appendix B: undefined pragma

46: PRAGMA LIST (NEXT);

A -

A:warning: RM Appendix B: incorrect pragma argument identifier
50: PRAGMA ROSA_WILLIAMS (TWO);

A:warning: RM Appendix B: undefined pragma
51: PRAGMA THOMAS_NORRIS (THREE);

A ~~m—————

A:warning: RM Appendix B: undefined pragma
83: PRAGMA PAGE (ONE);

A -

A:warning: RM Appendix B: too many pragma arguments
55: PRAGMA PAGE (FOUR);

A -

A:warning: RM Appendix B: too many pragma arguments

optimization pass 1 e28002a..NLSB

B-13

Lot Lpoddyfood L gl ERu DI AL e el

=
5

P Lo A el N U e

Ll

L ol

kit

Wk b

lwwm

ol o L e

47 IL instructious in
32 IL instructions out

Zo S hen ki 0 e sl e kT

When the test is executed, the following output is produced. As indicated by the
output comments, the test is not completely passed until the source code listing is checked
for proper location of the test comments. Although not included here, the source listing]

did, in fact, have the test comments on the proper pages.

IR

-~=~ E28002A CHECK THAT A PREDEFINED OR AN UNRECOGNIZED PRAGMA MAY HAVE
ARGUMENTS INVOLVING IDENTIFIERS THAT ARE NOT VISIBLE.
! E28002A CHECK LISTING FOR COMMENT "**x MUST APPEAR *#x",
! E28002A CHECK THAT COMMENTS "#** SAME PAGE #**x" ARE ON THE SAME
PAGE OF THE LISTING.

Pl

s SEE ’!’ COMMENTS FOR SPECIAL NOTES!!

b e Tzt

B.7 Class L Test Ezample

A Class L test case is designed to fail no later than link time (some implementations

may detect an error at compile time). In most cases, these tests check that “incomplete

or illegal Ada programs involving multiple, separately compiled units are detected and not

allowed to execute” (2:1.5).

R A b ha B b s LR ok adty L

LA1001F.ADA

OBJECTIVE:
CHECK THAT A PACKAGE CANOT BE NAMED AS A MAIN PROGRAM.

HISTORY:
- JET 08/12/88 CREATED ORIGINAL TEST.

PACKAGE LA1001F IS H
END LA1001F;

WITH REPORT; USE REPORT;
PRAGHMA ELABORATE (REPORT) ;

LR P e B

B-14

PACKAGE BODY LA1001F IS
BEGIN
TEST("LA1001F", "CHECK THAT A PACKAGE CANNOT BE NAMED AS A " &
"MAIN PROGRAM");
FAILED("PACKAGE WAS IMPROPERLY LINKED AND EXECUTED");

RESULT;
END LA1001F;

The following output shows that the Class L test compiled successfully:

Elxsi Verdix Ada Compiler, Copyright 1984, 1985, 1986, 1987
Version 5.5 - ELXSI UNIX VADS

File: /en0/gcs90d/jmarr/adadir/ltest.a
compiled Mon Jjun 18 11:31:25 1990

by user jmarx

unit: package 1a1001f

NO Ada ERRORS UNIT ENTERED
unit: package body 1a1001if
NC Ada ERRORS UNIT ENTERED

8 statements 21 lines

optimization pass 1 1a1001f..NLPS
9 IL instructions in
7 IL instructions out
optimization pass 1 la1001f..NLPB
36 IL instructions in
26 IL instructions out

When the test is linked, the following error message is produced, as desired:

RM 10.1(8): spec of 1a1001f (from /en0/gcs90d/jmarr/adadir/ltest.a)
can not be a main program
A parameterless integer function or procedure is required

Appendix C. Lex Description

The ALIANT prototype depends on a utility program called Lex. Lex is used to
create a C language subroutine which recognizes character strings produced by the Gen
software. This appendix describes the operation of Lex and some of the ways it can be
used to generate stand-alone programs or subroutines. Sample Lex specification files used

by the ALTANT prototype are also provided.

C.1 Lex Description

Lex is a generator of lexical analysis programs. A lexical analyzer is the first phase
of a compiler. “The function of the lexical anal‘yzer is to read the source program, one
character at a time, and to translate it into a sequence of primitive units called tokens.
Keywords, identifiers, constants, and operators are examples of tokens” (4:73). These

tokens are then passed to the next phase, the syntax analyzer, or parser.

Lex simplifies the somewhat tedious task of creating a lexical analyzer. Given an
input file containing properly formatted regular expressions and associated actions, Lex
will automatically generate a C language program, When compiled and executed, this
program will search for the user specified regular expressions in an input text file. If one
of the regular expressions is found, the associated action is performed. Lex was developed

by M. E. Lesk and E. Schmidt at Bell Laboratories in 1975 (30).

Lex programs are usually created to provide input to a parser generated by YACC.
YACC is an automatic generator for the parser phase of a compiler. It was designed by

S. C. Johnson and presented is his paper, YACC - Yet Another Compiler Compiler (26).

C-1

YACC produces a parser which continually invokes a user defined lexical
analyzer to process streams of input. The specification of the grammar includes
alist of tokens for the grammar, the grammar rules and any actions to be taken
as the rules are invoked. The actions have the ability to return values and to
use the values returned by other actions. (43:23)

When used in this manner, the Lex program is “included” in the YACC specification file,
allowing YACC to make function calls to the Lex subroutine. The YACC specification
file, which will not be discussed in more detail, consists of three sections: the declaration
scction, the grammar rules section and the program section. A thorough discussion of how
Lex and YACC work together can be found in a thesis hy Rosa J. Williams, Automatic

Generation of Parsers Using YACC and Lex (43).

Lex programs can also be used independently from YACC as a “stand-alone” program
or as a subroutine to other user defined programs. This allows the user to take full
advantage of the powerful recognition capability of regular expressions to search various

sorts of input text files.

A Lex program is defined by a specification file. The Lex specification file consists of

definitions, rules, and user subroutines. The format is as follows:

definitions
A
rules
wh
user subroutines
The definitions and user subroutines are optional and may be omitted. The smallest

Lex specificaiion file is just “%%”; in which the implied rule is to copy the input file

to the output file unchanged. When rules are specified, they have the general form

C-2

“expression action”. The expression is a reguvlar expression that will be described in
the next paragraph. The actions are user defined C language statements. Whenever the
regular expression is recognized in the input text, the corresponding action, if any, is exe-
cuted. Any portion of the input file that does not match a regular expression is copied to
the output file. The Lex specification file can be created using any text editor and stored
in a user file for Lex processing. When Lex is invoked with the name of the specification
file, the generated C program will be stored in “lex.yy.c”. Further details for processing

the specification file are provided in a later paragraph.

The regular expressions used by Lex are similar to those used by various UNIX
pattern recognition programs such as “awk” and “grep”. Regular expressions may con-
tain letters, digits and operator symbols. The following special characters are considered

operator symbols by Lex:

"N -7 x+ 0 ()8 /LY <>

If any of these characters is to be used as a text character, it must be preceded by the
escape character, \ (backslash), or be included within quotation marks. For example, each

of the following regular expressions will recognize the string “count++":

"count++" count'++" count\+\+

The left and right brackets, [and], are used to denote character classes. The character
1 b
class [aAbBcC] will match a single upper or lowercase A, B, or C. By using the brackets in

conjunction with the operator symbols \, , and -; a variety of recognition patterns can be

C-3

created. A comme. e.-ample is [a-20-9], which will match a single lowercase letter or digit.
To match any character besides a-z or 0-9, the ~ operator symbol is included: ["a-20-9].
But to match a-z, 0-9, and ", the escape symbol is included: [\"a-2z0-9]. The backslash

tells Lex to treat the caret symbol as a text character rather than a control symbol.

The 7 is used to denote optional characters. The expression st?k will match sk or stk.
By adding the repetition operator symbols * and 4 , more complicated text strings can be
recognized. The * symbol indicates zer» or more occurrences of a text character or string,
and the + symbol indicates one or mec~e occurrence. For example, st+7k* would match
such strings as s, st, stk, sttkk, and sk; but not k. The expression [a-z]+ will recognize all
strings of one or more lowercase letters. The expression [A-Za-z][A- Za-20-9}* will match

all alphanumeric strings beginning with a letter (43:46).

The operator symbol | denotes alternatioi. while the parentheses are uzed to group
complex expressions. The expression (abc|xyz) will match either abc or xyz. The expres-

sion (abc4|xyz*) will match such strings as abc, abec, xy, xyz, xyzz.

A more practical example is [a-zA-Z)([]?[a-2A-Z0-9])*. This expression
matches any identifier for the Ada language. Note that the identifier must
begin with a letter and it may contain zero or more additicnal letters or num-
bers. The “.” character is optional, but should it occur, it must be followed by
at least one letter or number. Hence, consecutive underscores or terminating
underscores are not allowed. (43:47)

Some of the operator symbols can be used to indicate the context in which a regular
expression is to be recognized. For example, the string “[a-z] will match any lowercase
character if it is located at the beginning of a line, whereas [a-z]$ will match the same

character if it occurs at the end of a line.

i s el o

Ao o d e G

L et BT e ¥ by

The remaining operator symbols are used in conjunction with the definition section
of the specification file. A simple example of the definition section is provided below.
Further information can be found in (30) or (43). To simplify some regular expressions, or
to make them more i2adable, the definition section can be used to give names to specific

expressions. For example, consider the following specification file:

e [eE] }
digit [0-9] }definition
digits {digit}([_1?{digits})* }section

v
ﬂ/[.c/;igits} ({e}[+]7{digits})? printf("integer"); }rules section
The braces, { and }, denote repetition if they enclose numbers, or definition expansion if
they enclose a name. In the example above, the braces are used for definition expansion,
but in the string a{1,5} the braces mean one to five occurrences of the letter “a”. The
regular expression in the rules section above will match an integer literal from the Ada
language and the action will cause “integer” to be printed (43). The next paragraph shows

how an actual Lex specification file is processed to create the Lex program.

To illustrate the steps in creating a Lex program, the following simple Lex specifica-

tion is borrowed from the UNIX User’s Manual (38):

W

[A-Z] putchar(yytext[0] + ’a’ - ’A’);
[J+3

[J+ putchar (* ?);

)

main()

{ yylexO; }

G e a

PR AT

I T TR E SR TR TP TORL.IC IR TV 0N

First note that this specification file has no declaration section. The rules section has three
regular expressions. The first one will match any uppercase letter. The corresponding
action will output the letter in lowercase. The array “yytext” is a standard character
found in every Lex generated program. It contains the input string matched by a regular
expression. In this case, a single character will be located in yytext[0]. By subtracting
the ASCII difference between “a” and “A”, the resulting character will be the Jowercase
equivalent of the letter in yytext[0]. The second regular expression/action will strip trailing
blanks from each input line, while the third regular expression/action will replace strings of
one or more non-trailing blanks with a single blank. The user subroutine sectinn contains
a driver program for the Lex program which has the standard name “yylex”. This driver
will allow the Lex program to execute without interfacing with any other programs. This
is a good way to test individual Lex programs before interfacing them to YACC or other

routines.

The first step to process the Lex specification file is to invoke Lex using the following

command:

lex filename

where “filename” is the filename of the Lex specification file. The resulting output is
automatically stored in “lex.yy.c”. The next step in creating an executable Lex program,

is to compile the lex.yy.c source code file:

cc lex.yy.c -1l

The executable file will be stored in a file called “a.out”. Figure C.1 shows in-
put/output examples for this program (with comments added). The way this sample
program was set up, the keyboard is the default input device and the terminal screen is
the default output device. Although this is a simple example, the sample input/output

demonstrates that the specified Lex program works properly.

ha.out <~-= execute compiled lex.yy.c program

THIS LINE IS IN ALL CAPITAL LETTERS. <~- input
this line is in all capital letters. <~-~ output
this line is MIXED UPPER AND lower case. <-- input
this line is mixed upper and lower case. <-~ output

THIS LINE HAS EXTRA SPACES IN THE MIDDLE. <-- input
this line has extra spaces in the middle. <-- output

Figure C.1. Sample Yylex Iuput/Output

As Lex processes a specification file, it will identify any errors found in rules syntax;
however, the C code in che action statements will not be checked for errors until the
lex.yy.c file is processed by the C compiler. Depending on the size of the specification file
and complexity of the regular expressions, the default sizes for the Lex generated tables
may be exceeded. If so, Lex will display an error message indicating the name of the table
that overflowed and the current size limit of the table. To increase the size of any of the
tables, a statement must be added in the declarations section of the specification file. The

format is “%x nnn" where nnn is a decimal integer representing the table size and x is one

of the parameters listed in Table C.1.

Table C.1. Lex Size Parameters

Letter Parameter
a transitions
e tree nodes
k packed character class
n states
0 output array size
P positions

The C source code produced by Lex can be interfaced with other C programs by
simply including the lex.yy.c with the other routines before compilation. Interface with
Ada programs is also possible by using pragma interface, as done in the ALIANT prototype
(Chapter IV). The brief Lex sample just presented did not return values to the calling
program when it matched a particular regular expression. The typical use of a Lex program
is to find a token and return a value for a parser to analyze syntax. That is the way Lex

is used in the ALIANT prototype.

C.2 Sample lex_spec Listing

The following listing is the lex_spec file generated from the Adagen2 grammar. For
each regular expression, a unique token number is returned. The ALIANT _Driver uses this

token to determine what action to take.

%ia 6000
e 7000
Yn 4000
%p 24000

C-8

o 5000

wh

graphic_character
basic_graphic_character
basic.character
identifier
letter_or_digit

letter

integer_literal
real_literal

integer

exponent

based_literal

base

based_integer
extended_digit
character_literal
string_literal

pragma
pragma:argument_association
predef_pragma
argument_association
object_decl
object_init_val
object_init_val_constrained_array
constant_decl

number_decl
identifier_list
full_type_decl
subtype.decl
subtype._indic

type_mark
derived_type.def
range_attribute
explicit_range
enum_type_def
enumeration_literal_specification
enumeration_literal
integer_type.def
floating_point_type.def
fixed_ point_type_def
floating_point_constraint
floating_accuracy.definition
fixed_point_constraint
fixed_accuracy_definition

1);
2)
3);
4);
5);
6);
7);
8);
9);
10);
11);
12);
13);
14);
15);
16);
17);
18);

{ return(
{ return(
{ return(
{ return(
{ return(
{ return(
{ return(
{ return(
{ return(
{ return(
{ return(
{ return(
{ return(
{ return(
{ return(
{ return(
{ return(
{ return(
{ return(19);
{ return(20);
{ return(21);
{ return(22);
{ return(23);
{ return(24);
{ return(25);
{ return(26);
{ return(27);
{ return(28);
{ return(29);
{ return(30);
{ return(31);
{ return(32);
{ return(33);
{ return(34);
{ return(33);
{ return(36);
{ return(37);
{ return(38);
{ return(39);
{ return(40);
{ return(41);
{ return(42);
{ return(43);

W L G L L b G L L G o L G L L b G G L G b b G G G o b0 G G W S L o o D S Y o o o W

array_type_def
array.of:access

array.of :boolean
crray_of:integer
array._of:real

array._of :recoxrd
array_of:task
wiconstrained array..def
constrained_array_def
index_subtype_definition
index_constraint
discrete_range
record._type.def
record_of:access
record_of :array

record._of :record
record_of:task
null_component_list
component_decl:default
component_decl:no_default
component_subtype_definition
discriminant_spec:default
discriminant_spec:no_default
discriminant_.constraint
discriminant_association
variant_part
variant_choice
variant_choice_others
access_type_def
access_to: array
access_to:record
access_to:task
incomplete_type.decl
indexed_componer ™

slice

selected_component
selector_all

attribute

predef_attr
attribute_designator
aggregate
named_component_association
andthen

orelse
membership_test_in

C-10

{ return(44);
{ return(45);
{ return(46);
{ return(47);
{ return(48);
{ return(49);
{ return(50);
{ return(51);
{ return(52);
{ return(53);
{ return(54);
{ return(55);
{ return(56);
{ return(57);
{ return(58);
{ return(59);
{ return(60);
{ return(61);
{ return(62);
{ return(63);
{ return(64);
{ return(65);
{ return(66);
{ return(67);
{ return(68);
{ return(69);
{ return(70);
{ return(71);
{ return(72);
{ return(73);
{ return(74);
{ return(75);
{ return(76);
{ return(77);
{ return(78);
{ return(79);
{ return(80);
{ return(81);
{ return(82);
{ return(83);
{ return(84);
{ return(85);
{ return(86);
{ return(87);
{ return(88);

e LY U L b G2 L L b e o b L b G G G L b b W L G e e b b G G G) L o G b L)) o S) o o o

membership_test_not_in
simple_expression
exponentiation
absolute_value
not_operator
null_access_value
parenthesized_expr
and_operator
ox_operatoxr
xor_operator

equality

inequality

less_than
less_than_or_equal_to
greater_than
greater_than_or_equal_to
nddition

subtraction

catenation
unary.addition
unary._minus
multiplication
division

mod._operator
rem_operator
exponentiation
absolute.value
not_operator
type.conversion
qualified._expr
alloc:qualified. expr
alloc:subtype.indic_constr
alloc:subtype_indic_no_constr
label

null_statement
assignment_statement
if_statement

condition
case_statement
case_statement_alternative
loop_statement
iteration_scheme:for
iteration_scheme:while
loop_param_spec:up
loop..param_spec:down

{ return(89);
{ return(90);
{ return(91);
{ return{ 92);
{ return(93);
{ return(94);
{ return(95);
{ return(96);
{ return(97);
{ return(98);
{ return(99);
{ return(100);
{ return(i01);
{ return(102);
{ return(103);
{ return(104);
{ return{105);
{ return(105);
{ return(107);
{ return(i08);
{ return(109);
{ return(110);
{ return(iil);
{ return(112);
{ return(i13);
{ return(i1g);
{ return(i115);
{ return(116);
{ return(117);
{ return(118);
{ return(119);
{ return(120);
{ return(i121);
{ return(122);
{ return(i23);
{ return(i24);
{ return(125);
{ return(126);
{ return(127);
{ return(128);
{ return(129);
{ return(130);
{ return(131);
{ return(132);
{ return(133);

C-11

W LY L L G G L S b e b b9 L G L U L o S G L L G G e W G L G e) b b b o b G) o o S S L o

block_statement
exit_statement
return_statement
goto_statement
subprogram_decl:procedulre
subprogram_decl:function
user_defined_operator
subprog_param.spec:default
subprog_param_spec:in
subprog_param_spec:in_default
subprog_param_spec:in_out
subprog_param.spec:no_default
subprog.param_spec:out
mode_in

mode_in_default
mode_in_out

mode_out

procedure_body
function_body
procedure_call_statement
function_call
actual_parameter_part
parameter_association
formal_parameter

actual _parameter
package_spec

package_body
private_type.decl
limited_private_type._decl
deferred_constant_declaration
use.clause

rename:entry
rename:exception
rename:object
rename:package
rename:subprog

rename :subprog._or_entry
task_spec

task_type_spec

task_body

entry_decl
entry_family_decl
entry._param_spec
entry_param_spec:default
entry_param_spec:in

C-12

{ return(i34);
{ return(135);
{ return(136);
{ return(137);
{ return(i38);
{ return{139);
{ return(340);
{ return(i4i);
{ return(i142);
{ return(i43);
{ return(144);
{ return(145);
{ return(146);
{ return(147);
{ return(148);
{ return(149);
{ return(150);
{ return(151);
{ return(152);
{ return(153);
{ return(is4);
{ return(155);
{ return(156);
{ return(is7);
{ return(158);
{ return(159);
{ return(160);
{ return(i61);
{ return(162);
{ return(163);
{ return(164);
{ return(165);
{ return(166);
{ return(167);
{ return(168);
{ return(169);
{ return(170);
{ return(171);
{ return(i72);
{ return(173);
{ return(174);
{ return(i75);
{ return(176);
{ return(i77);
{ return(178);

U S b L b b o L e L o e S b G Lt W L ST o W o G o G S S N o W b G S e b e e b o e e o

entry_param_spec:in_default
entry_param_spec:in_out
entry_param_spec:no_default
entry_param.spec:out
entry.call_statement
accept_statement
delay_statement
sel_wait:accept._alt
sel_wait:accept_alt_guarded

sel_wait:accept_alt_unguarded

sel_wait:delay_alt
sel_wait:delay_alt_guarded

sel_wait:delay_alt_unguarded

sel_wait:else_part
sel_wait:term_alg
sel_wait:term_alt_guarded
sel_wait:term.alt_unguarded
select_alternative
terminate_alternative
conditional .entry_call
timed_entry_call
abort._statement
with_clause
procedure_body_stub
function_bedy_stub
package_body_stub
task_body_stub
procedure_subunit
function_subunit
package_subunit
task_subunit
exception_decl
exception_handler
exception_choice_others
predef_except
raise_statement
gen_package_spec
gen_subprog._spec
gen_subprog.spec:function
gen_subprog_spec:procedure
gen_formal_obj:default
gen_formal_obj:in
gen_formal_obj:in_default
gen_formal_obj:in_out
gen_formal_obj:no_default

{ return(179);
{ return(180);
{ return(181);
{ return(182);
{ return{183);
{ return(184);
{ return(185);
{ return(186);
{ return{187);
{ return(188);
{ return(189);
{ return(190);
{ return(191);
{ return(192);
{ return(193);
{ return(194);
{ return(195);
{ return(196);
{ return(197);
{ return(198);
{ return(199);
{ return(200);
{ return(201);
{ return(202);
{ return(203);
{ return(204);
{ return(205);
{ return(206);
{ return(207);
{ return(208);
{ return(209);
{ return(210);
{ return(211);
{ return(212);
{ return(213);
{ return(214);
{ return(215);
{ return(216);
{ return(217);
{ return(218);
{ return(219);
{ return(220);
{ return(221);
{ return(222);
{ return(223);

L e e o S I S e R R e S R e k™ W

gen_formal_part
gen_formal_subprog
gen_formal_subprog:box_default
gen_formal_subprog:nm _default
gen_formal_type
gen_formal_type:access
gen_formal_type:array
gen_formal_type:discrete
gen_formal_type:fixed_point
gen_formal_type:floating_point
gen_formal_type:integer
gen_formal_type:lim_private
gen_formal_type:private
generic_type_definition
gen_function_instantiation
gen_package_instantiation
gen_procedure_instantiation
gen_subprog_instantiation
gen_actual_object
gen_actual:subprog
gen_actual:type
gen_actual:type_access
gen_actual:type_array
gen_actual:type_discrete
gen_actual:type_fixed_point
gen_actual:type_floating_point
gen_actual:type_integer
generic_association
generic_formal_parameter
generic_actual_parameter
length_clause
length_clause:size
length_clause:small
length_clause:strng_size
length_clause:strg_size_access
length_clause:strg_size_access
length_clause:strg_size_task
enum_repr_clause
record_repr._clause
alignment_clause
component_clause
address_clause

code_statement
START_COMPILATION:
tEND_COMPILATION

{ return(224);
{ return(225);
{ return(226);
{ return(227);
{ return(228);
{ return(229);
{ return(230);
{ return(231);
{ return(232);
{ return(233);
{ return(234);
{ return(235);
{ return(236);
{ return(237);
{ return(238);
{ return(239);
{ return(240);
{ return(241);
{ return(242);
{ return(243);
{ return(244);
{ return(245);
{ return(246);
{ raturn(247);
{ return(248);
{ return(249);
{ return(250);
{ return(251);
{ return(252);
{ return(253);
{ return(254);
{ return(285);
{ return(256);
{ return(257);
{ return(258);
{ return(259);
{ return(260);
{ return(261);
{ return(262);
{ return(263);
{ return(264);
{ return(265);
{ return(266);
{ return(995);
{ return(996);

L i a e aa e T e B " JIL MY L WO Vor WOV WP VOV I VSV Wy S U VAP W G S VP U G G S S S U 0 O o R v v

[a-z\:\.]+
[1+

[\n]

Wi

C.8 Sample mk.lspec Listing

The following listing is the Lex specification and driver routine that is used to gen-
erate the lex.spec file from the input grammar. The regular expressions are designed to
recognize every character expected in the grammar file. Token 12 will match any string of
lowercase letters, underscores, and semicolons in quotes. Token 12 represents an Ada pri-
mary feature that requires an entry in the lex_spec file. The mk.spec main driver routine
first prints out the constant header information (Lex parameters) for the Lex specification.
Then, for each recognized feature in the input grammar, an “expression
printed. The action is to return a unique token number that is determined by the value of

“Counter”. After the entire grammar has been processed, the constant trailer information

for the lex.spec file is printed out.

W

\({ return(1);
\) { return(2);
\" { return(3);
A} { return(4);
\% { return(5);
\/ { return(6);
\ok { return(7);
A\ { return(8);
\. { return(9);
\~ { return(10);
= { return(11);
\"[J*[a~z_\:J+[J*+\" { return(12);
[A-Za-z_\:1+ { return(13);
fo-93+ { return(14);
£ 1+ { return(998);
[(\n] { return(999);

L TR i A I R e

C-15

{ return{997); }
{ return(998); }
{ return(999); }

action” pair is

Saldad

Ao b A2

Vgt e

Lo,

[P IR DD A YR WS4y

T

SR M AN e w0 A A,

w
%
5
=

W

#include <string.h>
main()

{

int Token, Counter, Length;
char *0Output;
Counter = 1;

printf
printf
printf
printf
printf
printf

while ((Token

if

}

/* DECLARE VARIABLES */
/% DECLARE OUTPUT STRING */
/* INTIALIZE TOKEN COUNTER */

("4s", "%a 6000 \n"); /+ PRINT LEX PARAMETERS #*/

("%s", "he 7000 \n");
("%s", "%n 4000 \n");
("%s", "Yp 24000 \n");
("ZS", "'/.0 5000 \nu);
("./.S" s u'/"/. \nn) ;

1

yylex()) = 0) {
(Token == 12) {

/* WHILE NOT END-OF-FILE... */

/* STRIP OF QUOTE MARKS AND PRINT EXPRESSION AND ACTION */

Length = strlen (yytext);
yytext [-~Length] = ’\0’;
Cutput = &yytext[1];

printf ("%-40s{ return(%3u); }\n", Output, Counter);

Counter++; }

/* PRINT REMAINING DEFAULT ENTRIES TO THE LEX_SPEC FILE */

printf
printf
printf
printf
printf
printf

("START_COMPILATION:
(" :END_COMPILATION
("La-z\\:_]+

"L 1+

("E\\n]

(nl/.sn, M/.'/' \nu);

{ return(995); X\n");
{ return(996); }\n");
{ return(997); F\n");
{ return(998); X\n");
{ return(999); *\n");

C-16

E

Appendix D. Source Code

D.1 Shell Seript

——

#-- FILE HEADER -
b LT -
#-- DATE: 31 Aug 90 ~--
#-- VERSION: 1.0 -
#-- TITLE: ALIANT Prototype Shell Script -
#-- FILENAME: xruna -
#-- COORDINATOR: Capt James S. Marr -
#-- PROJECT: GCS-90D Thesis --
#~- OPERATING SYSTEM: 4.3 BSD UNIX --
#-- LANGUAGE: UNIX Shell Script -
#-- FILE PROCESSING: This file can be executed by entering ‘csh runa’. -
#-- To eliminate the requirement to enter ‘csh’, the file can be made -
#-- independently executable by running the command ‘chmod 755 runa’. -
#-- After executing the ‘chmod’ command, the script can be executed by -
#-- simply entering ‘runa#’, -
#-- CONTENTS: This file contains the UNIX shell script that is used -
#-- to execute the ALIANT prototype. --
#~- FUNCTION: This script provides the interface between the Gen test case --
#- generator and the ALIANT Ada code. Error checking is conducted on -
#-- input parameters and informative error messages are produced when --
#-- necessary. There are two basic ways in which the ALIANT prototype is --
#-- ~xecuted. The following algorithms illustrate the methods where -
#-- parameteri is the input grammar filename (minus ‘.gen’), paraveter2 ~-
#-- is the requested number of combinations to generate, and parumeter3d --
#-- is the batch input filename: -
#—- -
#-—- Method 1: -
- put <parameteri>.gen file into g._temp file -=
#—- append "* <parameter2> compilation" to g_temp file -
#-- execute gen.exe¥ with input from g_temp and -
#=-- output directed to gen_out -
#-- if gen.exe* terminated normally --
#-- overwrite contents of g_temp with <parameter2> -
#-- execute aliant_driver.exex ~-~
#=- —_—
#-- Method 2: --
#-- put <parameteri>.gen file into g_temp file --
#-- append "* <parameter2> compilation" to g_temp fils -
#-- execute gen.exex with input from g_temp and -
#-- output directed to gen_out ==
#=- if gen.exe* terminated norxrmally -=
#-- overwrite contents of g_temp with <parameter2> -
#-- execute aliant_driver.exe* with input from -

D-1

#-- <parameter3> and output directed to alnt_out -

#== If two valid input parameters are provided, the first method is used. --
#-- If three valid input parameters are provided, the second method is -
#-- use. -
#-- -
#

BEGIN SCRIPT
OUTPUT DATE AND TIME TO ALNT_OUT FILE
unset noclobber
date > alnt_out
set noclobber

##t IF THERE ARE NO ARGUMENTS OR ONLY ONE, DISPLAY ERROR MESSAGE ##

if ($#targv == 0 || S$#argv == 1) then

clear

echo *

echo * Missing Gen filename and/or combinations argument\(s\), try again.
echo \¥

echo *---- Format: runa* fni num \[fn2\]

echo *---- Where : fnl.gen is the Gen input file,

echo \#=-m=mmemeene num is the desired number of combinations, and

echo *=rmeemm——me—— fn2 is an optional ALIANT batch input file.

echo *

IF THERE ARE TWO ARGUMENTS, CONTINUE PROCESSING SCRIPT

else if ($#argv == 2) then
clear

IF THE TWO ARGUMENTS ARE VALID, EXECUTE ALIANT PROTOTYPE

if (-e $argv[1].gen && $argv[2] > 0) then
unset noclobber
echo
echo ~- Gen execution in progress --
echo
cat $argv[il.gen > g_temp
echo * $argv[2] compilation >> g_temp
gen,exe*<g_temp>gen_out & echo $argv[2]>g_temp && aliant_driver.exe*
set noclobber

IF BOTH ARGUMERTS ARE NOT VALID, DISPLAY AN ERROR MESSAGE
else

echo *
echo * Gen filename provided does not exist and/or number

D-2

echo * of combinations provided not greater than 0, try again.
echo *
endif

IF THERE ARE THREE ARGUMENTS, CONTINUE PROCESSING SCRIPT
else if ($#argv == 3) then
IF ALL THREE ARGUMENTS ARE VALID, EXECUTE ALIANT PROTOTYPE

if (-e $argvl1].gen == 1 && $argv2] > 0 && -e $argv(3] == 1) then
unset noclobber
cat $argv[1].gen > g_temp
echo * $argv{2] compilation >> g_temp
gen.exex<g_temp>gen_out & echo $argvi2]>g _temp &&
aliant_driver.exe*<$argv[3]>>alnt_out
set noclobber

IF ALL THREE ARGUMENTS ARE NOT VALID, DISPLAY AN ERROR MESSAGE

else
clear
echo *
echo * Gen filename provided does not exist and/or number
echo * of combinations provided not greater than 0 and/or
echo * ALIANT filename provided does not exist, try again.
echo *

endif

IF THERE ARE MORE THAN THREE ARGUMENTS, DISPLAY AN ERROR MESSAGE

else
clear
echo *
echo * Too many arguments provided, try again.
echo *
echo *---- Formet: runa* fnl num \[fn2\]
echo *---- Where : fnl.gen is the Gen input file,
echo \¥—=~———cmceue num is the desired number of combinations, and
echo \¥m———remeee—— fn2 is an optional ALIANT batch input file.
echo \#
endif

OUTPUT DATE AND TIME TO THE ALNT_OUT FILE
date >> alnt_out

END OF SCRIPT

D-3

i L K

oy e A RS v R Rk Kk B

AR 3R RE AL L

Lt

PEN IV EAL)

AL 4

PR

D.2 Ada Code

-_— FILE HEADER

-~ DATE: 31 Aug 90

-~ VERSION: 1.0

=- TITLE: ALIANT Prototype

-- FILENAME: aliant.a

~~ COORDINATOR: Capt James S. Marx

-~ PROJECT: GCS~-90D Thesis

-- OPERATING SYSTEM: 4.3 BSD UNIX

-- LANGUAGE: Elxsi Verdix Ada (Version 5.5)

-- FILE PROCESSING: This file is compiled using the Verdix command string
- ‘ada aliant.a’. The Text_IO and Math library packages are required
- for compilation and linking. The object code is linked using the

- Vexrdix command string ‘a.ld aliant_driver -o aliant.driver.exe’.

-- The filename ‘yylex’ must also be available for linking. This file
- contains, among other things, the C procedures ‘yylex’, ‘opengen’,
-- and ‘closegen’. These procedures are linked to the Ada code using
- pragma interface. The Verdix ‘ada.lib’ file must contain a link

-- entry for the ‘yylex’ file. Further details are included in the

-- documentation for the Lex_Pkg source code.

-- CONTENTS:

- Lex_Pkg - Ada package that provides interface to C procedures.

- Parameter_Pkg - Ada package that contains parameters used throughout
-~ the ALIANT prototype.

-~ Features_Pkg - Ada package that contains the Ada features table.

-= Matrix_Pkg - Ada package that contains the combination storage

- matrix and associated access procedures.

- ALIANT Driver - Ada procedure that controls the ALIANT execution.

-~ FUNCTION: This file contains all the Ada code supporting the ALIANT
-~ prototype. This code works in conjunction with a test case generator
- (written in C) via intermediate ASCII data files. The control of

-= the interface is handled by a UNIX shell script. The shell script
- executes the test case generator, storing the results in a data file.
- Providing the test case generator terminated normally, the ALIANT

-- driver is executed to analyze the output stored in the intermediate
- data file.

- PACKAGE HEADER

-- DATE: 31 Aug 90

~- VERSION: 1.0

-~ NAME: Lex_Pkg

-~ PACKAGE TYPE: Specification only.

~-—- CONTENTS: Specification of function Yylex and procedures Opengen and

D-4

- Closegen.

-- DESCRIPTION: This package specifies the interface to the three

- subunits mentioned abovs ncing ‘pragma interface’. These subunits
~= are written in the C language and linked to the ALIANY prototype.
- Assuming the object code for Yylex, Opengen, and Closegen is located
- in a file called ‘yylex’; the following entry in the Verdix library
-= (ada.lib) will allow these routines te be linked with the Ada code:
~-- ‘WITH1:LINK:yylex;’.

-~ ENCAPSULATED OBJECTS: None.

—-- OBJECT OPERATORS: None.

~-- FILES READ: None.

-~ FILES WRITTEN: None.

-~ HARDWARE INPUT: None.

-~ HARDWARE OUTPUT: None.

-- REQUIRED LIBRARY UNITS: None.

-~ CALLING MODULES:

-- Yylex called by: ALIANT Driver

~-- Opengen called by: ALIANT Dxiver

- Closegen called by: ALIANT_Driver.ALIANT Wrapup

-~ AUTHOR: Capt James S. Marx
-~ HISTORY: None.

package Lex _Pkg is
function Yylex return integer;
procedure Opengen;
procedure Closegen;

private
pragma interface (C, Yylex);
pragma interface {C, Opengen);

pragma interface (C, Closegen);

end Lex_Pkg;

- PACKAGE HEADER

~- DATE: 31 Aug 90

-- VERSION: 1.0

~- NAME: Parameter_Pkg

-- PACKAGE TYPE: Specification and Budy.

~~ CONTENTS: This package declares several constant and variable

- parameters and types used throughout the ALIANT prototype,

-- a Screen_Delay procedure, and two ALIANT-unique exceptions.

-- DESCRIPTION: The specification contains the constants requiring

~-- visibility throughout the ALIANT prototype. Two of the parameters

D-5

-= are accessed via function calls to Get_Max_Features and -
- Got_Max_Combinations. These two encapsulated objects are initialized --

- when the Parameter_Pkg body is elaborated.

- The Max_Features is initialized by reading the lex_spec file to -=
-- determine how many features there are. The Max_Combinations is -
-- initialized by reading the g_temp file to determine how many -
- combinations were requested by the user. A calculation is then made --
-- to determine the approximate storage space that will be required to ~--
- hold the expected number of unique combinations generated. --
-~ ENCAPSULATED OBJECTS: Max_Features and Max_Combinations. --
~= (OBJECT OPERATORS: Get_Max_Features and Get_Max_Combinations. -

-- FILES READ: Lex_Spec_File and Gen_Combination_File.
-~ FILES WRITTEN: None.

-- HARDWARE INPUT: File input.

~- HARDWARE OUTPUT: CRT.

-- REQUIRED LIBRARY UNITS: Body requires Text_IO and Math. --

-- MODULES CALLED (by executable package body):
—-— Text_I0.new_page

- Text_I0.new_line

- Text_I0.put_line

~-- Text_I0.open

- Math.sqrt

- Text_I0.get_line

- Text_I0.skip_line

- Text_I0.close

- Combination_I0.get (instantiation of Text_I0.integer_io) -

-~ AUTHOR: Capt James S. Marr
~-- HISTORY: None.

package Parameter_Pkg is

Feature Length : constant := 40;
Lex_Spec_Filename : constant string (1..8) :=
Database_Filename : constant string (1..7) :=

Gen_Combination_Filename : constant string (1..8) :

subtype Feature_String is string (1..Feature_Length);
subtype Parameter_Type is integer range 1..3500;

procedure Screen_Delay;
function Get_Max_Features return Parameter_Type;

function Get_Max_Combinations return Parameter_ Type;

Fatal_Exception : exception;
Partial Exception : exception;

end Parameter_Pkg;

D-6

"lex_spec";
"afis_db";
"g_temp";

with text_io;
with math;
package body Parameter Pkg is

Max_Features : Parameter_Type;

Max_Combinations : Parametor_Type;

Input_Combinations : natural;

Feature_Count : natural;

String_Length : natural;

Lex_Spec_File : text_io.file_type;

Gen_Combination_File : text_io.file_type;

Input_String : Parameter_Pkg.Feature_String := (others => ’ ’);

MODULE HEADER

DATE: 31 Aug 90

VERSION: 1.0

NAME: Screen_Delay

DESCRIPTION: This procedure is used in several places in the ALIANT
prototype to provide a time delay for displaying user input error
messages on the terminal screen.

ALGORITHM: Execute the Ada delay statement.

PASSED VARIABLES: None.

RETURNS: None

GLOBAL VARIABLES USED: None.

GLOBAL VARIABLES CHANGED: None.

FILES READ: None.

FILES WRITTEN: UNone.

HARDWARE INPUT: DNone.

HARDWARE OUTPUT: None.

MODULES CAL{ED: None.

CALLING MODULES:
Matrix_Pkg.Display_Matrix
Matrix_Pkg.Load_Database

AUTHOR: Capt James S. Marx
HISTORY: None.

ORDER-OF ANALYSIS: 0(1) since it just executes a single statement.

procedure Screen_Delay is
begin
delay (duration (1.5));

end Screen_Delay;

D-7

s i Bl

)L

XA

L)

v b 0 P L B b L B

z
3

MODULE HEADER

DATE: 31 Aug 90
VERSION: 1.0
NAME: Get_Max_Features
DESCRIPTION: This function is used to get the current value of
Parameter_Pkg.Max_Features.
ALGORITHM: Return the encapsulated package variable Max_Features.
PASSED VARIABLES: DNonme.
RETURNS: Parameter_Pkg.Max_Features
GLOBAL VARIABLES USED: Parameter_Pkg.Max_Features
GLOBAL VARIABLES CHANGED: None.
FILES READ: None.
FILES WRITTEN: None.
HARDWARE INPUT: None.
HARDWARE OUTPUT: None.
MODULES CALLED: None.
CALLING MODULES:
Declarative parts in bodies of:
Features_Pkg
Matrix_Pkg
ALIANT. Driver

AUTHOR: Capt James S. Marr
HISTORY: None.

ORDER-OF ANALYSIS: 0(1) since just a single statement is executed.

function Get_Max_features return Parameter_Type is
begin
return (Max_Features);

end Get_Max_Features;

MODULE HEADER

DATE: 31 Aug 90

VERSION: 1.0

NAME: Get_Max_Combinations

DESCRIPTION: This function is used to get the current value of
Parameter Pkg.ifax_Combinations.

ALGORITHM: Return the encapsulated package variable Max_Combinations.

PASSED VARIABLES: None.
RETURNS: Parameter_Pkg.Max_Combinations
GLOBAL VARIABLES USED: Parameter_Pkg.Max _Combinations

D-8

~- GLOBAL VARIABLES CHANGED: None.

== FILES READ: \None.

~-- FILES WRITTEN: None.

~- HARDWARE INPUT: None.

-- HARDWARE OUTPUT: None.

-~ MODULES CALLED: None.

-~ CALLING MODULES: Declarative part in body of Matrix_Pkg.

-- AUTHOR:
~- HISTORY:

Capt James S. Marx
None.

~-- ORDER-OF ANALYSiIS: 0(1) since just a single statement is executed.

function Get_Max_Combinations return Parameter_Type is

begin

return (Max_Combinations);

end Get_

package

begin

Max_Combinations;

Combination_I0 is new text_io.integer_io (natural);

-= DISPLAY OPENING ALIANT MESSAGE --

text_io.
text_io
text_io

text_io

new_page;

.new_line;
Lput_line (M skkkkskkkokkokk ook ok kokokok sokskokkokkokokkkdorork !) 5
text_io.

put_line (" #* ALIANT initialization in progress **");

cput_line (M ok kokk ok dokkokkokokokkokokdokokdokokok 1) 5
text_io.

new_line;

-- BEGIN BLOCK TO DETERMINE VALUE FOR MAX_FEATURES --

begin

-~ OPEN LEX_SPEC_FILE AND SKIP LEX PARAMETER LINES --

text_io.open (Lex_Spec_File, text_ioc.in_file,

Parameter_Pkg.Lex_Spec_Filename);

while (Input_String (1..2) /= "4%") loop

end

text_io.get_line (Lex_Spec_File, Input_String, String_Length);

loop;

-~ COUNT THE NUMBER OF FEATURES IN THE LEX_SPEC_FILE --

D-9

b vl il

Feature_Count := 0;

while (Input_String (1..18) /= "START_COMPILATION:") loop
text_io.get_line (Lex_Spec_File, Input_String, String_Length);
text_io.skip_line (Lex_Spec_File);

Feature_Count := Feature_Count + 1;
end loop; E
text_io.close (Lex_Spec_File);
Max_Features := Feature_Count - 1;
exception

when text_io.name_error =>
text_io.new_line;
text_io.put_line (" <Parameter_Pkg body>");
text_io.put_line (" #*x NAME EXCEPTION ERROR RAISED WHILE s*%x");
text_io.put_line (" #** TRYING TG OPEN LEX SPECIFICATION #¥x%");
text_io.put_line (" #%% FILE. CHECK FILENAME IN PARAMETER *¥x*");
text_io.put_line (" *%x PACKAGE AND CURRENT DIRECTORY. *kk!) o]
text_io.new_line;
raise Parameter_Pkg.Fatal_Exception;

when text_io.end_erroxr =>
text_io.new_line;
text_io.put_line (" <Parameter_Pkg body>");
text_io.put_line (" *** PREMATURE END~OF-FILE REACHED WHILE ##x");
text_io.put_line (" **¥*x READING LEX SPECIFICATION FILE. *kAN) N
text_io.put_line (" *** CHECK FORMAT OF LEX SPECIFICATION. #**%");
text_io.new_line;
text_io.close (Lex_Spec_File);
raise Parameter_Pkg.Fatal_Exception;

when constraint_error =>
text_io.new_line;
text_io.put_line (" <Parameter_Pkg body>");
text_io.put_line (" **x NUMBER OF FEATURES IS OUT OF RANGE. #*x"); 3
text_io.put_line (" *¥* CHECK LEX SPECIFICATION FILE AND *kk) b
text_io.put_line (" #*%* PARAMETER TYPE IN PARAMETER PACKAGE. #%x"),
text_io.new_line;
raise Parameter_Pkg.Fatal_Exception;

when others =>
text_io.new_line;
text_io.put_line (" <Parameter_Pkg body.1>");
text_io.put_line (" #** UNKNOWN EXCEPTION RAISED *x*");
text_io.put_line (" *** WHILE INITIALIZING ALIANT. **x*");
text_io.new_line;
raise;

end;
-- BEGIN BLOCK TO DETERMINE VALUE FOR MAX_COMBINATIONS -- 3
begin

-= GET INPUT_COMBINATIONS FROM GEN_COMBINATION_FILE -~

AL ¢ et N vl L

v

text.lo.open (Gen_Combination_File, text_io.in_file,

Parameter Pkg.Gen_Combination_Filename);
Combination_IO.get (Gen_Combination_File, Input_Combinations);
text_io.close (Gen_Combination_File);

CALCULATE AN ESTIMATED VALUE FOR MAX_COMBINATIONS BASED
ON THE VALUE OF INPUT_COMBINATIONS. THIS CALCULATION
REDUCES THE AMOUNT OF UNUSED SPACE IN THE COMBINATION
MATRIX FOR LARGE VALUES OF INPUT_COMBINATIONS. -

Max_Combinations := integer (
math.sqre (1200.0 * float (Input_Combinations)));

exception

when text_io.name_exrror =>
text_io.new_line;
text_io.put_line (" <Parameter_Pkg body>");
text_io.put_line (" *¥* NAME EXCEPTION ERROR RAISED WHILE #%x");
text_io.put_line (" #** TRYING TO OPEN THE GEN COMBINATION *¥*");
text_io.put_line (" *¥x FILE. CHECK FILENAME IN PARAMETER *¥*');
text_io.put_line (" *** PACKAGE AND CURRENT DIRECTORY. *okk!)
text_jio.new_line;
raise Parameter_Pkg.Fatal_Exception;

when text_io.end_exror =>
text_io.new_line;
text_io.put_line (" <Parameter_Pkg body>");
text_io.put_line (" *%* PREMATURE END-OF-FILE REACHED WHILE *xx");
text_io.put_line (" *%* READING GEN COMBINATION FILE. CHECK **%*");
text_io.put_line (" *** FORMAT OF GEN COMBINATION FILE. Aokk!) 5
text_io.new_line;
text_io.close (Gen_Combination_File);
raise Parameter_Pkg.Fatal_Exception;

when text_io.data_error =>
text_io.new_line;
text_io.put_line (" <Parameter_Pkg body.1>");
text_io.put_line (" #** NUMBER OF COMBINATIONS IS OUT OF *kk)
text_io.put_line (" #*** RANGE. CHECK GEN COMBINATION FILE AND **%");
text_io.put_line (" **+ PARAMETER TYPE IN PARAMETER PACKAGE. *#*x");
text_io.new_line;
text_io.close (Gen_Combination_File);
raise Parameter_Pkg.Fatal_Exception;

when constraint_error =>
text_io.new_line;
text_io.put_line (" <Parameter_Pkg body.2>");
text_io.put_line (" #** NUMBER OF COMBINATIONS IS OUT OF *kk")
text_io.put_line (" *%* RANGE. CHECK GEN COMBINATION FILE AND #*x"):
text_io.put_line (" #** PARAMETER TYPE IN PARAMETER PACKAGE. #*x");
text_io.new_line;
raise Parameter_Pkg.Fatal_Exception;

when others =>

text_io.new_line;

St el 1 Lot b

Ve et 2 doako e G fr Pt
1 Tt T a0 e, 0 bl 0 b e 5 10l L e 1 o e A S st e o e WL v

text_io.put_lire (" <Parameter_Pkg body.2>");
text_io.put_line (" #*x UNKNOWN EXCEPTION RAISED #*x");
text_io.put_line (" #*** WHILE INITIALIZING ALIANT. #*x");

text_io.new_line;
raise;
end;

end Parameter Pkg;

- PACKAGE HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0
-— NAME: Features_Pkg

-~ PACKAGE TYPE: Specification and Body.

—-- CONTENTS: This package contains a procedure Load_Features_Table and a

- function Get_Feature.

-- DESCRIPTION: The procedure is used to load the Ada features from the
-- lex_spec file into an array of text strings.

- within the ALIANT prototype to access the Ada features.
-- ENCAPSULATED OBJECTS: Features_Table

-~ OBJECT OPERATORS: Get_Feature
-- FILES READ: None.

-- FILES WRITTEN: None.

-- HARDWARE INPUT: None.

-~ HARDWARE QUTPUT: None.

~- REQUIRED LIBRARY UNITS: Specification requires Parameter_Pkg and

- Body requires Text_IO0 and Parameter_Pkg.

- used with the Parameter_Pkg.

~-- AUTHOR. Capt James S. Marr
-- HISTORY: None.

The pragma elaborate is

The function is used

with Parameter_ Pkg;
package Features_Pkg is

procedure Load_Features_Talle;

function Get_Feature (Feature_lumber :
return Parametex_Pkg.Feature _String;

end Features_Pkg;

with text_io;

with Parameter_Pkg;

pragma elaborate (Parameter_Pkg);
package body Features_Pkg is

in natural)

Max_Features : constant Parameter_Pkg,Parametex_Type

D-12

Al Y L S n T

PR AR PR TRINCA ST

SRV TY PRV NN COR I

:= Parameter_Pkg.Get Max_Features;
Features_Table : array (1..Max_Features) of
Parameter_Pkg.Feature_String;

MODULE HEADER

DATE: 31 Aug 90
VERSION: 1.0
WAME: Load_Features_Table

DESCRIPTION: This procedure loads the Ada features from the lex_spec

file into the Features_Table.
ALGORITHM:

open lex_spec file

skip Lex parameter lines

while not end-of-file lex_spec file

read next line of lex_spec file
strip off Ada feature and store in Features_Table

close lex_spec file
PASSED VARIABLES: None.
RETURNS: None.
GLOBAL VARIABLES USED: Parameter_Pkg.Lex_Spec_Filenvme
GLOBAL VARIABLES CHANGED: Features_Pkg.Features_Takle
FILES READ: Lex_Spec_File
FILES WRITTEN: XNone.
HARDWARE INPUT: File input.
HARDWARE OUTPUT: Nonme.
MODULES CALLED:

Text_I0.open

Text_ID.get_line

Text_I0.close
CALLING MODULES: ALIANT Driver.

AUTHOR: Capt James S. Marr
HISTORY: None.

ORDER-OF ANALYSIS: 0(n) since the procedure is dominated by a loop
that executes once for each feature. Therefore, n is dependent on
the value of Max _Features.

procedure Load_Features_Table is

String_Length : natural;

Lex_Spec_File : text_io.file_type:

Blanks : constant Parameter_Pkg.Feature_String
:= (othexrs => ? *);

Input_String : Parameter_Pkg.Feature_String := Blanks;

begin

D-13

-- OPEN LEX_SPEC_FILE AND SKIP LEX PARAMETER LINES --

LT AL]

text_io.open (Lex_Spec_File, text_io.in_file,
Parameter_Pkg.Lex_Spec_Filename);
while (Input_String (1..2) /= "44") loop
text_io.gev_line (Lex_Spec_File, Input_String, String_Length);
end loop;

AN kM e L et |

o

~- LOAD EACH FEATURE INTO THE FEATURES_TABLE --

for I in 1..Max_Features loop
Input_String := Blanks;
text_io.get_line (Lex_Spec_File, Input_String, String_Length);
text_io.skip_line (Lex_Spec_File);
Features_Table (I} := Input_String;
end loop;

B e seatend it JLLIS 1L

text_io.close (Lex_Spec_File);

exception

when text_io.name_error =>
text_io.new_line;
text_io.put_line (" <Features_Pkg.Load_Features_Table>");
text_io.put_line (" **x NAME EXCEPTION ERROR RAISED WHILE **x");
text_io.put_line (" *¥* TRYING TO OPEN LEX SPECIFICATION s*x");
text_io.put_line (" #** FILE. CHECK FILENAME IN PARAMETER =»*x");
text_io.put_line (" **x PACKAGE AND CURRENT DIRECTORY. kAN
text_io.new_line;
raise Parameter_Pkg.Fatal_Exception;

whon text_io.end_error =>
text_io.new_line;
text_io.put_line (" <Features_Pkg.Load_Features_Table>");
text_io.put_line (" %% PREMATURE END-OF-FILE REACHED WHILE #%%");
text_io.put_line (" **x READING LEX SPECIFICATION FILE. *kk)
text_io.put_line (" *%* CHECK FORMAT OF LEX SPECIFICATION. **x");
text_io.new_line; :
text_io.close (Lex_Spec_File); i
raise Parameter_Pkg.Fatal _Exception; :

end Load_Features_Table;

MODULE HEADER --

DATE: 31 Aug 90 -~
VERSION: 1.0 -
NAME: Get_Feature -
DESCRIPTION: This function is used to get a feature string for a -

specified feature number. -
ALGORITHM: Return requested feature string. -

D-14

PASSED VARIABLES: Feature_Number. -
RETURNS: Feature_String. -
GLOBAL VARIABLES USED: Features_Pkg.Features_Table. -
GLOBAL VARIABLES CHANGED: None, -
FILES READ: None. -
FILES WRITTEN: None. --
HARDWARE INPUT: None. -
HARDWARE OUTPUT: None. ~-
MODULES CALLED: None. -
CALLING MODULES: Matrix_Pkg.Display_Matrix -

AUTHOR: Capt James S. Marr -
HISTORY: None. -

ORDER~OF ANALYSIS: 0(1) since just a single ctatement is executed. -

end

function Get_Feature (Feature_Number : in natural)
return Parameter_Pkg.Feature_String is

begin
return Features_Table (Feature_Number);
end Get_Feature;

Features_Pkg;

PACKAGE HEADER --

DATE: 31 Aug 90 -~
VERSION: 1.0 -
NAME: Matrix_Pkg -~
PACKAGE TYPE: Specification and Body. -
CONTENTS: This package contains six procedures used to access the -
Combination_Matrix. -
DESCRIPTION: When the body is elaborated, the declarative part creates --
the Combination_Matrix that is used to store the feature counts for --
each combination identified in the Gen input file. This package --
includes all the necessary procedures to initialize, update, and ~=
retrieve the contents of the Combination_ Matrix. -
ENCAPSULATED OBJECTS: Combination_Matrix -
OBJECT OPERATORS: Initialize _Matrix, Start_Combination, Count_Feature, --
End_Combination, Display_Matrix, and Load_Database. -
FILES READ: None. --
FILES WRITTEN: None. —--
HARDWARE INPUT: None. -
HARDWARE OUTPUT: None. --
REQUIRED LIBRARY UNITS: Bodyv requires Text_10, Features Pkg, and -

D-15

-- Parameter_Pkg. Pragma elaborate is used with the Parameter_Pkg.

~-— AUTHOR: Capt Jamcs S. Marr
-- HISTORY: None.

package Matrix_Pkg is

procedure Initialize_Matrix;

procedure Staxrt_Combination;

procedure Count_Feature (Feature_Number : in natural);
procedure End_Combination;

procedure Display_Matrix;

procedure Load _Database;

end Matrix_Pkg;

with text_io;

with Features_Pkg;

with Parameter_Pkg;

pragma elaborate (Parameter_Pkg);
package body Matrix_Pkg is

Max_Features : constant Parameter_Pkg.Parametexr_Type
:= Parameter_Pkg.Get_Max_Features;

Max_Combinations : constant Parameter_Pkg.Parameter_Type
:= Parameter_Pkg.Get_Max_Combinations;

subtype Comb_Number_Type is integer
range 0..Max_Combinations + 1;

Combination_Matrix : array (1..Max_Combinations,

-1..Max_Features) of natural;

Current_Comb : Comb_Number_Type := 0;
Next_Comb ¢ Comb_Number_Type := 1;
Duplicate_Count ! integer := 0;
Null_Count : integer := 0;

Number_Comb_Processed : integer := 0;

package Natural IO is new text_io.integer_io (natural);

- MODULE HEADER

-- DATE: 31 Aug 90

-- VERSION: 1.0

-- NAME: Initialize_Matrix

-- DESCRIPTION: This procedure performs the initialization of the

- Combination_Matrix.

-- ALGORITHM: Using two nested loops, initialize each position of the
- Combination Matrix to zero.

-- PASSED VARIABLES: None.

D-16

s

ot at t Lot

IR

L s Lot b

s P L, an B PR NL s e al e Fa AT B

A

EAROCR) PR (ot

Ve

P Y PPV WO TV LS PR e

ol B

vas o adakh

A uernnse b

RETURNS: None.

GLOBAL VARIABLES USED: Matrix Pkg.Max_Combinations and
Matrix_Pkg.Max_Features.

GLOBAL VARIABLES CHANGED: Matrix_Pkg.Combination Matrix

FILES READ: None.

FILES WRITTEN: None.

HARDWARE INPUT: None.

HARDWARE OUTPUT: None.

MODULES CALLED: None.

CALLING MODULES: ALIANT Dxiver

AUTHOR: Capt James S. Marr
HISTORY: None.

ORDER-OF ANALYSIS: 0O(n**2) since the procedure contains two nested
loops. The value of n**2 is actually the product of Max_Features and
Max_Combinations.

procedure Initialize_Matrix is
begin
-— INITIALIZE ALL POSITIONS OF COMBINATION_MATKIX TO ZERD -~
for I in 1..Max_Combinations loop
for J in -1..Max_Features loop
Combination_Matrix (I,J) := 0;
end loop;
end loop;

end Initialize Matrix;

MODULE HEADER

DATE: 31 Aug 90

VERSION: 1.0

NAME: Start_Combination

DESCRIPTION: This procedure is executed whenever a new combination is
identified. Its purpose is to set appropriate counters and provide
a runtime indication that processing is still in progress.

ALGORITHM: Increment Current_Comb and Next_Comb and display a dot on
the user terminal for every 10 combinations identified.

PASSED VARIABLES: None.

RETURKS: Hone.

GLOBAL VARIABLES USED:
Matrix_Pkg.Current_Comb
Matrix_Pkg.Next_Comb
Matrix_Pkg.Number_Comb_Processed

D-17

—-- GLOBAL VARIABLES CHANGED: -
-= Matrix_Pkg.Current_Comb -
-- Matrix_Pkg.Next_Comb ==
- Matrix_Pkg.Number_Comb_Processed -
~-- FILES READ: None. -
-~ FILES WRITTEN: None. - 4
-- HARDWARE INPUT: None. - i
-- HARDWARE OUTPUT: CRT. -
-- MODULES CALLED: --
-- Text_I0.put --
- Text_I0.new_line -
- Text_IO0.put_line -
-- CALLING MODULES: ALIANT Driver --

~= AUTHOR: Capt James S. Marr -
-~ HISTORY: None. -

-~ ORDER-OF ANALYSIS: 0(1) since only sequential statements are executed. --

procedure Start_Combination is
begin

~= INCREMENT COMBINATION COUNTERS AND DISPLAY -~
-~ A DOT FOR EVERY TEN COMBINATIONS PROCESSED --

Current_Conb := Next_Comb;

Next_Comb := Next_Comb + 1;

if ((Numbexr_Comb_Processed mod 10) = 0) then J
text_io.put (".");

end if;

Number_Comb_Processed := Number_Comb_Processed + 1;

exception
when constraint_error =>

text_io.new_line;
text_io.put_line (" <Matrix_Pkg.Start_Combination>");
text_io.put_line (" #** TOO MANY GEN COMBINATIONS. #*x");
text_io.put_line (" #*%* PARTIAL RESULTS FOLLOW. xEA) o
text_io.new_line;
Current_Comb := Current_Comb - 1;
raise Parameter Pkg.Partial_Exception;

I T DY TSR B AL NI PR,

end Start_Combination;

- MODULE HEADER -

-~ DATE: 31 Aug 90 -

D-18

-- VERSION: 1.0 -
== NAME: Count_Feature -
-~ DESCRIPTION: This procedure is used to increment a specified feature --
- count for the current combination being processed. -
-~ ALGORITHM: Increment feature count by subscripting Combination_Matrix --
- with Current_Comb and Feature_Number. -
—-- PASSED VARIABLES: Feature_Number -
~=~ RETUXNS: None. -
~-=- GLOBAL VARIABLES USED: Matrix_Pkg.Current_Comb --
—-— GLOBAL VARIABLES CHANGED: Matrix_Pkg.Combination_Matrix --
-- FILES READ: None. -
== FILES WRITTEN: None. --
-— HARDWARE INPUT: None. --
-- HARDWARE OUTPUT: CRT (exception messages) --
-~ MODULES CALLED: Text_IO.new_line, Text_IO.put_line (exception.) -
—--~ CALLING MODULES: ALIANT Driver -=

~- AUTHOR: Capt James S. Marr -
—-= HISTORY: HNone. -

-- ORDER-OF ANALYSIS: 0(1) since only sequential statements executed. -

procedure Count_Feature (Feature_Number : in natural) is
begin
-— INCREMENT APPROPRIATE FEATURE COUNT BY ONE --

Combination_Matrix(Current_Comb,Feature_Number) :=
Combination_Matrix(Current_Comb,Feature_Numbexr) + 1;

exception
when constraint_error =>

text_io.new_line;

it (Current_Comb = 0) then
text_io.put_line (" <Matrix_Pkg.Count_Feature>");
text_io.put_line (" *#* INCORRECT FORMAT IN GEN INPUT *xx*");
text_io.put_line (" *** FILE. CHECK THE GEN GRAMMAR. s#*x");
text_io.new_line;
raise Parameter_Pkg.Fatal_Exception;

else

text_io.put_line (" <Matrix_Pkg.Count_Feature>");
text_io.put_line (" *** FEATURE NUMBER OUT OF RANGE IN #%*");
text_io.put_line (" *x% COUNT_FEATURE. CHECK LEX SPEC #¥*");
text_io.put_line (" **% AND PARAMETER PACKAGE, *kk)
text_io.new_line;
raise Parameter_Pkg.Fatal_Exception;

end if;

D-19

end Count_Feature;

MODULE HEADER

DATE: 31 Aug 90
VERSION: 1.0
NAME: End_Combination
DESCRIPTION: This procedure is executed whenever the end of a
combination is detected. The ended combination is checked to see
if it is null or a duplicate of a previous combination. A null
combination is one in which all feature counts are zero. A duplicate
combination is one in which each feature count ‘matches’ the
corresponding feaiure count of another combination. In this context,
a ‘match’ is when hoth feature counts are zero or both are non-zero.
ALGORITHM:
check for null combination and count non-zero feature counts
store the, feature count total for this combination
if this is null combination, increment null counter
if not first combination and not null, check for duplicate
if it is duplicate
increment duplicate count for matching combination
increment total duplicate counter
zero out current combination row of matrix
if combination was null or duplicate, decrement combination pointer
PASSED VARIABLES: None.
RETURNS: None.
GLOBAL VARIABLES USED:
Matrix_Pkg.Combination_Matrix
Matrix_Pkg.Current_Comb
Matrix_Pkg.Null_Count
Matrix_Pkg.Duplicate_Count
Matrix_Pkg.Max_Features
GLOBAL VARIABLES CHANGED:
Matrix_Pkg.Combination_Matrix
Matrix_Pkg.Current_Comb
Matrix_Pkg.Null_Count
Matrix_Pkg.Duplicate_Count
FILES READ: None.
FILES WRITTEN: None.
HARDWARE INPUT: None.
HARDWARE OUTPUT: Nsne.
MODULES CALLED: None.
CALLING MODULES: ALIANT Driver

AUTHOR: Capt James S. Marr
HISTORY: MNone.

ORDER-OF ANALYSIS: O0f(n**2) since the procedure is dominated by two
nested loops for checking duplicate combinations. The value for n is
dependent on the number of combinations already in the table and the

D-20

idrdod

e L

Sl

b ki e

M bt el g 1 e

"

A

Mt e B ALl o SRS L e e

L AL M

PRNTEUN AN

i B B I e sl R

410 F gl

PO AT

- numbor of foatures that must bo comparoed bofore a non-duplicato is --

- discoverad. In tho bant cagse, tho Tirst foature may mismatch; but -
- in the worst case tho last possiblo combination is boing chockod -
- against a full combination matrix in which thero is no duplicatoe. -
e In this worst case, the actual ordor-of is: -
- 0(Max_Combinations » Max_Featuros), .-

ek e A 248 B B G s o G 08 0 e B Tk A e S e P A R L A AR . P i i S DA A B B PAR e 0 A ALl e At it kM i S = o T S e 0, N M Ao R b G

procedure End_Combination is

Null_Comb ¢ booloan := truo;
Duplicato_Comb : booloan := truo;
Foeaturo_Count : natural := 0;

bogin

=~ COUNT THE NUMBER OF NON-ZERO FEATURE COUNTS AND -~
-~ SET THE NULL_COMB FLAG TO FALSE IF AT LEAST ONE --
~~ FEATURE COUNT IS NON~ZERO. -

for J in 1..Max_Features loop
if (Combination_Matrix (Current_Comb,]) /= 0) then
Null_Comb := falso;
Foeaturo_Count := Faaturo_Count + 1;
ond if;
ond loop;

~-- STORE TFE NUMBER OF FEATURES COUNTED FOR THIS COMBINATION --
Combination_Matrix (Current_Comb, ~1) := Featuro.Count;
-~ INCREMENT THE NULL_COMB COUNTER IF NECESSARY --
if Null_Comb then
Null_Count := Null_Count + 1;
ond if;
-~ DETERMINE IF THIS COMBINATION IS A DUPLICATE =--
if ((Curront_Comb > 1) and {(not Null_Comb)) thon
for I in 1..{Current_Comb ~ 1) locp
Duplicato_Comb := truo;
-~ COMPARE FEATURE COUNTS, ONE BY ONE, BETWEEN =--
-~ CURRENT COMBINATION AND ANOTHER COMBINATION --
-- UNTII, ONE OR THE OTHER (HOT BOTHE) IS ZERO. -
for J in 1..Max_Featuroes loop

if (((Combination_Matrix (Current_Comb,J)
= 0) and (Combination_Matrix (I,J)

D-21

/= 0)) or

((Combination_Matxix (Curront_Comb,J)
/= 0) and (Combination_Matrix (I,J)
= 0))) thon

Duplicate_ Comb := false;

oxit;

ond if;
end loop;

-~ ENTIRE DUPLICATE CHECKING LOOP.

if Duplicate_Comb thon

Combination Matrix (I,0) := Combination_Matrix (I,0) + 1;

exit;
end if;
ond loop;

else

-= IF CURRENT COMBINATION IS THE FIRST -
-~ ONE OR IS NULL, IT CAN’T BE A DUPLICATE -~

Huplicate_Comb := falso;

ond if;

———

if

IF CURRENT COMBINATION IS A DUPLICATE, =--
INCREMENT DUPLICATE COQUNT AND ZERO QUT =--
ALL POSITIONS OF THIS MATRIX ROW. -

Duplicate_Comb then
Duplicate_Count := Duplicato_Count + 1;
for J in -1, .Max_Features loop
Combination_Matrix (Current_Comb,J) := 0;
end loop;

end if;

IF CURRENT COMBINATION IS DUPLICATE -~
OR NULL, DECREMENT CURRENT_COMB. -

if (Null_Comb or Duplicate.Comb) then
Next_Comb ;= Current_Comb;
Current_Comb ;= Current_Comb - }1;
end if;

end End_Combination;

[P

DATE:

IF CURRENT COMBINATION IS A DUPLICATE, INCREMENT THE --
DUPLICATE COUNTER OF THE OTHER COMBINATION AND EXIT ~-

MODULE HEADER

31 Aug 90

D-22

VERSION: 1.0
NAME: Display_Matrix
DESCRIPTION: This procedure is used to display selected combinations.
The combinations are selected based on two threshold values: a dupli-
cation threshold and a feature threshold. The duplication threshold
will select any combinations that have a duplicate count greater or
equal to the specified threshold value. The feature threshold will
select any combinations that have the same or less number of features
as the threshold value. The selected combinations are displayed to
show the features included in each combination.
ALGORITHM:
display ALIANT Processing Statistics
determine if user would like to select combinations
while selection is desired
get the threshold values
display the number of selected combinations
determine if user would like to display combinations
if display is desired, display combinations
determine if more selection is desired
PASSED VARIABLES: None.
RETURNS: None.
GLOBAL VARIABLES USED:
Matrix_Pkg.Number_Comb_Processed
Matrix_Pkg.Null_Count
Matrix_Pkg.Duplicate_Count
Matrix_Pkg.Current_Comb
Matrix_Pkg.Combination_Matrix
Matrix_Pkg.Max_Features
GLOBAL VARIABLES CHANGED: None.
FILES READ: None.
FILES WRITTEN: None.
HARDWARE INPUT: Keyboard.
HARDWARE OUTPUT: CRT.
MODULES CALLED:
Display_Matrix.Get_User_Input
Text_IO.new_line
Text_10.put_line
Text_IO0.new_page
Text_I0.put
Matrix_Pkg.Natural_I0.get (instantiation of Text_IO.integer_io)
Text_IO.skip_line
Parameter_Pkg.Screen_Delay
Display_Matrix.Check_Paging
Features_Pkg.Get_Feature
CALLING MODULES: ALIANT Driver.ALIANT Wrapup

AUTHOR: Capt James S. Marr
HISTORY: Norme.

ORDER-OF ANALYSIS: O(n#*3) since the procedure is dominated by three
nested loops. The dominant portion is when the user chooses

D-23

L,

VoA dside s)

LB el

threshold values that result in all combinations being displayed.

In the worst case, the actual order-of is:

0(g * Max_Combinations * Max_Features); where g represents the number
of times the user decides to input new threshold values.

procedure Display_Matrix is

Unique_Comb
Last

: natural;

Duplicate_Threshold : natural,;

Feature_Threshold
Paging_Counter
Combination_Count

Usexr_Input

Paging _Selected

Quit_Paging

subtype Option_Type is integer range 1..3;

: natural;
: natural;
: natural;
: string (1..50);
: boolean;
¢ boolean;

’ =

: Comb_Numbexr_Type :

0;

DATE: 31 Aug 90
VERSION: 1.0

- ———

MODULE HEADER

NAME: Get_User_Input

DESCRIPTION: This is a local procedure to Display Matrix which
created to avoid duplication of code.
display a selected prompt and then get the user response.

ALGORITHM:
display prompt

based on option parameter

get the user input

PASSED VARIABLES:

RETURNS: None.

GLOBAL VARIABLES
Display_Matrix
Display_Matrix

GLOBAL VARIABLES
Display_Matrix
Display_Matrix

Option

USED:
.User_Input
.Last

CHANGED:
.User_Input
.Last

FILES READ: None.
FILES WRITTEN: None.

HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED:

Keyboard.
CRT.

Text_I0.new_line

Text_IO.put

Text_IO0.put_line
Text_10.get_line
Text_IO.skip_line

CALLING MODULES:

D-24

The overall purpose is to

s g T b

e R

- Matrix_Pkg.Display_Matrix -
- Matrix_Pkg.Display _Matrix.Check_Paging -

-- AUTHOR: Capt James S. Marr -
~~ HISTORY: None. -

-- ORDER-OF ANALYSIS: 0(1) since only sequential statements are used. -

procedure Get_User_Input (Option : Option_Type) is
begin
-- DISPLAY APPROPRIATE MESSAGE BASED ON OPTION --

text_io.new_line;
case Option is
when 1 =>
text_io.put (" Enter ‘y’ to " &
"SELECT combinations for display >> ");
when 2 =>
text_io.put_line (" Enter ‘y’ to DISPLAY selected " &
"combinations,");
text_io.put (" or ‘p’ to DISPLAY with paging >> ");
when 3 =>
text_io.put_line (" Press RETURN to continue paging,");
text_io.put (" or enter ‘q’ to quit paging >> ");
end case;

R R O T T R T O I T T N T T

-~ GET USER INPUT FROM KEYBOARD --

User_Input (1) := > ?’;

text_io.get_line (User_Input, Last);

if (Last > 49) then
text_lo.skip_line;

end if;

exception

when text_io.end_error =>
text_io.new_line (2);
text_io.put_line (" <Matrix_Pkg.Display Matrix." &

"Get_User_Input>");

text_io.put_line (" *** END-OF-FILE REACHED ON STD INPUT. **x");
text_io.put_line (" *** PROBABLY INVALID ENTRIES IN THE s#*x");
text_io.put_line (" #%* ALIANT BATCH INPUT FILE (IF USED).%*%");
text_io.new_line;

raise Parameter_Pkg.Fatal_Exception;

end Get_User_Input;

MODULE HEADER

DATE: 31 Aug 90
VERSION: 1.0
NAME: Check_Paging

DESCRIPTION: This is a local procedure to Display_Matrix.

to control the paging of CRT output.

ALGORITHM:
if paging is selected

increment the page counter

if the screen is full
reset the page counter

determine if user wants to quit paging
if user wants to quit paging, set flag

PASSED VARIABLES: None.
RETURNS: None.
GLOBAL VARIABLES USED:

Display_Matrix.Paging_Selected
Display._Matrix.Paging_Counter

Display_Matrix.User_Input
GLOBAL VARIABLES CHANGED:

Display_Matrix.Paging_Counter

Display_Matriz.Usexr_Input
Display.Matrix.Quit_Paging
FILES READ: None.
FILES WRITTEN: None.
HARDWARE INPUT: Keyboard.
HARDWARE OUTPUT: CRT.
MODULES CALLED:
Display_Matrix.Get_User_Input
Text_IO.new_line
CALLING MODULES:
Matrix_Pkg.Display_Matrix

AUTHOR: Capt James S. Marr
HISTORY: None.

ORDER-OF ANALYSIS: O0(1) since only sequential statements are used.

It is used

procedure Check_Paging is
begin

-- IF PAGING IS BEING U

PR

E
—-- AND CHECK FOR END-OF

<
M

~- THEN DETERMINE IF CONTINUED PAGING DESIRED. —--

if Paging_Selected then

D-26

Paging_Counter := Paging_Counter + 1;
if Paging.Counter >= 21 then
Paging _Counter := 0;
Get_User_Input (3);
if ((User_Input (1) = ’q’) or (User_Input (1) = ’Q’)) then
Quit_Paging := true;

end if;
text_io.new_line;
end if;

end if;
end Check_Paging;
begin
-- DISPLAY ALIANT PROCESSING STATISTICS --

text_io.new_line;
text_io.put_line (" #**¥x ALIANT Processing Statistics #kkkx");

text_io.put_iine (" Number of combinations processed: " &
integer’image (Number_Comb_Processed));
text_io.put_line (" Null combination count: " &
integer’image (Null_Count));
text_io.put_line (" Duplicate combination count: " &
integer’image (Duplicate_Count));
text_io.put_line (" Resulting combinations: " &

integer’image (Current_Comb));
text_io.put_line (" skkkkikkkdokimkkk kkkokirkksokkihkkikkkiorkki) ;
text_io.put_line (" " & ascii.bel);

~-- DETERMINE IF USER WANTS TO SELECT COMBINATIONS FOR DISPLAY --

Get_User_Input (1);
while ((User_Input(1) = ’y’) or (User_Input(1) = ’Y’)) loop

-— PROMPT USER FOR DUPLICATION_THRESHOLD --
-- UNTIL VALID VALUE IS PROVIDED. -

loop

begin
text_io.new_page;
text_io.new_line;
text_io.put(" Enter duplication threshold >> ");
Natural_IO.get (Duplicate_Threshold);
text_io.skip_line;
exit;

exception

when text_io.data_error =>
text_io.new_line;
text_io.put_line (" ** INVALID THRESHOLD VALUE -- " &

D-27

o

"MUST BE A NATURAL NUMBER #*x");

text_io.skip_line;

Parameter_Pkg.Screen_Delay;

when text_io.end_error =>

text_io.new_line (2);

text_io.put_line (" <Matrix_Pkg.Display_Matrix.i>");

text_io.put_line (" #%* END-OF-FILE REACHED ON STD" &
" INPUT. *%x");

text_io.put_line (" **x PROBABLY INVALID ENTRIES" &
" IN THE **x");

text_io.put_line (" #*** ALIANT BATCH INPUT FILE" &
" (IF USED).*xx");

text_io.new_line;

raise Parameter_Pkg.Fatal_Exception;

end;
end loop;

-~ PROMPT USER FOR FEATURE_THRESHOLD --
-~ UNTIL VALID VALUE IS PROVIDED. --

loop
begin

text_io.new_page;
text_io.new_line;
text_io.put(" Enter feature threshold >> ");
Natural_I0.get (Feature_Threshold);
text_io.skip_line;
exit;

exception
when text_io.data_erroxr =>
text_io.new_line;
text_io.put_line (" ** INVALID THRESHOLD VALUE -- " &
"MUST BE A NATURAL NUMBER **");
text_io.skip_line;
Parameter_Pkg.Screen_Delay;
when text_io.end_exror =>
text_io.new_line (2);
text_io.put_line (" <Matrix_Pkg.Display_Matrix.2>");
text_io.put_line (" **x END-OF-FILE REACHED ON STD" &
" INPUT. *x*");
text_io.put_line (" %% PROBABLY INVALID ENTRIES" &
"IN THE *%x");
text_io.put_line (" #¥* ALIANT BATCH INPUT FILE" &
" (IF USED).**x");
text_io.new_line;
raise Parameter_Pkg.Fatal_Exception;

end;
end loop;

-~ COUNT THE NUMBER OF COMBINATIORS THAT SATISFY THE -~
-~ DESIRED DUPLICATE AND FEATURE THRESHOLD CONSTRATNTS -~

Combhination_Count := 0;
for I in 1..Current_Comdb loop
if ((Combination_Matrix (I,0) »= Duplicate_Thrashold) and
(Combination_Matrix (I,~1) <= Feature_Tareshold)) then
Combination_Count := Combiniicn.Count + 1;
end if;
end loop;

-~ DISPLAY TBE NUMBER OF COMBINATIONS COUNTED ~~

text_io.new._ page;
text_io.new_line;
if (Combination_Count = 1) then
text_jo.put_line (" There is 1 combination with a " &
"duplication count >= " &
integer’image (Duplicate_Threshold) & ",");
text _ic.put_line (" and a feature sount <= " &
integer’image (Feature_Threshold) & *.");
else
text_io.put_line (" There are " &
integer’image (Combination_Count)} &
" combinations with a duplication sount >= " &
integer’image (Duplicate_Threshold) & ",*};
text_io.put_line (” and a feature count <= " &
integer’image (Feature_Threshold) & ".");
end if;

-~ IF THERE IS AT LEAST ONF COMBINATION SELECTED, --
~~ PROXPT THE USER FOR DISPLAY AND PAGING OPTIONS ~-

i1 (Cowbination_Count /= 0) then
Get_User XInput (2):
Paging _Selected := false;
Quit_Pazging := false;
if {(User_Input{1) = ’y?) or (Usexr_Input{i) = ’Y') or
(User_Input(}) = ’p?) or (User_Inpuv(i) = 'P’)) then
if ((User_Input(1) = ’p*) or (User_Input(i) = ’P’)) then
Paging_Selected := true;
Paging_Countexr := 0;
end if;
text_io.new_page;

-~ DISPLAV SELECTED COMBINATICNS UNTIL ERD ~-
-~ DR UNTIL. PAGING OFTION IS TERMINATED. ~~

Paging..Loop:
for I in 1..Current_Comb loop

D-2¢

-~ IF COMBINATION MEETS THRESHOLD CONSTRAINTS, --
-- DISPLAY COMBINATION INFO FOLLOWED BY FEATURES --

if ((Combination_Matrix (I,0) >=
Duplicate_Threshold) and
(Combination_Matrix (I,-1) <=
Feature_Threshold)) then
text_io.new_line;
Check_Paging;
exit Paging_Loop when Quit_Paging;
text_io.put_line (" Combination " &
integer’image (I) & ": *);
Check_Paging;
exit Paging_Loop when Quit_Paging;
text_io.put_line (" (" &
integer’image (Combination_Matrix (I,0)) &
" duplicate(ls])");
Check_Paging;
exit Paging_Loop when Quit_Paging;
text_io.new_line;
Check_Paging;
exit Paging_Loop when Quit_Paging;

-~ FOR EACH FEATURE IN SELECTED COMBINATION, -~
-- DISPLAY FEATURE FOLLOWED BY FEATURE COUNT --

for J in 1..Max_Features loop
if (Combination_Matrix (I,J) /= 0) then
text_io.put_line (" " &
Features_Pkg.Get_Feature (J) &

" (count:" &
integer’image (Combination_Matrix (I,J))
& ol)ll);

Check_Paging;
exit Paging_Loop when Quit_Paging;
end if;
end loop;
end if;
end loop Paging Loop;
end if;
end if;
Get_User_Input (1);
end loop;

end Display_Matrix;

MODULE HEADER --

DATE: 31 Aug 90 --
VERSTION: 1.0 -

D-30

NAME: Load_Database

DESCRIPTION: This procedure loads the AFTS database according to user
specified threshold values. The threshold values are used in the
same manner as in Matrix_Pkg.Display_Matrix.

ALGORITHM:
determine if user wants to load database
if database load is desired

get the dupliczte and feature threshold values
display ‘loading database’ message

load selected combinations to the AFIS database
display ‘loading complete’ message

PASSED VARIABLES: Nonme.

RETURNS: None.

GLOBAL VARIABLES USED:
Parameter_Pkg.Database_Filename
Matrix_Pkg.Current_Comb
Matrix_Pkg.Combination Matrix

GLOBAL VARIABLES CHANGED: None.

FILES READ: None.

FILES WRITTEN: AFIS Database.

HARDWARE INPUT. Keyboaxd.

HARDWARE OUTPUT: CRT, File output.

MODULES CALLED:

Text_I0.new_page
Text_I0.new_line
Text_I0.put
Text_I0.get_line
Text_I0.skip_line
Matrix_Pkg.Natural_I0.get (instantiation of Text_IO.integer_io)
Parameter_Pkg.Screen _Delay
Text_I0.create
Text_I0.put_line
Text_I0.close
CALLING MODULES: ALIANT Driver.ALIANT Wrapup

AUTHOR: Capt James S. Marr
HISTORY: None.

ORDER-OF ANALYSIS: O(n**2) since the procedure is dominated by two
nested loops. In the worst case when all combinations are written
to the database, the actual order-of could be as high as:
0(Max_Combinations * Max_Features).

procedure Load_Database is

Database_File : text_io.file_type;
Last : natural;
Duplicate_Threshold : natural;
Feature_Threshold : natural;

D-31

Combination_Count ¢ natural := 0;
User_Input : string (1..50);

begin
~-~ DETERMINE IF USER WANTS TO LOAD AFIS DATABASE -~

text_io.new_page;
text_io.new_line;
text_io.put (" Enter ‘y’ to load AFIS database >> ");
User_Input (1) := ° ?;
text_lo.get_line (User_Input, Last);
if (Last > 49) then
text_io.skip_line;
end if;

if ((User_Input (1) = ’y’) or (User_Input (1) = ’Y’)) then

-~ PROMPT USER FOR DUPLICATION_THRESHOLD --
-= UNTIL VALID VALUE IS PROVIDED. -

loop
begin
text_io.new_page;
text_io.new_line;
text_io.put(" Enter duplication threshold" &
" for database >> ");
Natural_i0.get (Duplicate_Threshold);
text_io.skip_line;
exit;
exception
when text_io.data_error =>
text_ic.new_line;
text_io.put_line (" *% INVALID THRESHOLD VALUE -- " &
"MUST BE A NATURAL NUMBER #*");
text_io.skip_line;
Parameter_Pkg.Screen_Delay;
end;
end loop;

-- PROMPT USER FOR FEATURE_THRESHOLD --
-= UNTIL VALID VALUE IS PROVIDED. -

loop
begin
text_io.new_page;
text_io.new_line;
text_io.put(" Enter feature threshold for database >> ");
Natural_I0.get (Feature_Threshold);

D-32

R I I TR

text.io.skip_line;
exit;

exception
when text_io.data_error =>
text_io.new_line;
text_io.put_line (" *x INVALID THRESHOLD VALUE -- " &
"MUST BE A NATURAL NUMBER **");

text_io.skip. line;
Parameter_Pkg.Screen_Deiay;

end;

end loop;
~- DISPLAY ‘LOADING DATABASE’ MESSAGE --

text_ic.new_page;
text_io.new_line;
text_io.put_line (" Loading AFIS database...");

-~ CREATE DATABASE FILE AND INITIALIZE FILE HEADER ~-

text_io.create (Database_File, text_io.out_file,
Parameter _Pkg.Database_Filename);
text_io.put_line (Database_File, ">>>> AFIS DATABASE FILE <<<<");

~~ SEARCH COMBINATIONS FOR DESIRED SELECTZON --

for I in 1..Current_Comb loop
if ((Combination_Matrix (I,0) >= Duplicate_Threshold) and
(Combination_Matrix (I,-1) <= Feature_Threshold)) then
text_io.new_line (Database_File);

~= FOR EACH SELECTED COMBINATION, OUTPUT A UNIQUE ~-
-~ RECORD IDENTIFIER (USE CCMBINATION NUMBER). -

text_io.put (Database_File, integer’image (I) & ": ");

-~ FOR EACH FEATURE OF SELECTED COMBINATIONS, ~--
-~ OUTPUT A ‘1’ IS THE FEATURE COUNT IS NON-ZERO --
-- OR £ ‘0’ IS THE FEATURE COUNT IS ZERO. --

for J in 1..Max_Features loop
if (Combination_Matrix (I,J) = 0) then
text_io.put (Database_File, integer’image (0));

else
text_ic.put (Database_File, integer’image {(1));
end if;
end loop;
Combination_.ount := Combination_Count + 1;

end if;

D-33

end loop;

~-- CLOSE THE DATABASE FILE AND DISPLAY COMPLETION MESSAGE --

text_io.close (Database_File);

text_io

.new_line;

text_io.put (" ...Ths AFIS database has been loaded with " &
integer’inage (Combination_Count) & " record");
if (Combination_Count = 1) then
text_lo.put_line (".");

else

text_io.put_line ("s.");

end if;
end if;

exception

when text_io.name_erroxr

text_io
text_io
text_io
text_io
text_io
text_io
text_io

.new_line;

.put_line ("
.put_line ("
.put_line ("
.put_line ("
.put_line ("
.new_line;

n
v

<Matrix_Pkg.Load_Database>");

*kk NAME EXCEPTION ERROR RAISED WHILE
*x*x TRYING TO CREATE DATABASE FILE.

**+* CHECK FILENAME IN PARAMETER
*** PACKAGE FOR PROPER FORMAT.

raise Parameter_Pkg.Fatal Exception;
when text_ic.end_error =>
.new_line (2);

text_io
text_io
text_io
text_io
text_io
text_io

raise Parameter_PLg

when others
text_io
text_io
text_io
text_io

text_ic.
text, . io.

.put_line ("
.put_line ("
.put_line ("
.put_line ("
.new_line;

=>
.new_line;
.put_line ("
.put_line ("
.put_line ("
new_line;

<Matrix_rkg.Load_Database>");

**% END-OF~FILE REACHED ON STD INPUT.
*+% PROBABLY INVALID ENTRIES IN THE

k1)
ko) ;
kM)
*Akt)

*kAN)
dkk") o

*%% ALTANT BATCH INPUT FILE (IF USED).***");

Tatal _Exception;

<Matrix_Pkg.L ,ad_Database>");

4 UNKNOWN EXCEPTION RAISED **x");
% WHILE LOADING DATABASE. #x");

close (Database_File);

raise Parametor_Pkg.Fatal_Exception;

end Load_Database;

end Matrix_Pkg;

MAIN DRIVER HEADER

DATE: 31 Aug 90

VERSION: 1.0

D-34

NAME: ALIANT Driver
DESCRIPTION: This procedure is the main driver for the ALIANT
prototype. The ALIANT prototype reads in combinations from Gen
via an ASCII file. Actually, the entire ALIANT prototype includes
the Gen software and the UNIX script file that ties the Gen and
Ada code together. This driver is responsible for calling the
various procedures that analyze the Ada feature combinationms.
ALGORITHM:
call Matrix_Pkg.Initialize_Matrix
call Features_Pkg.Load_Features_Table
call Lex_Pkg.Opengen
call Lex_Pkg.Yylex (return Token)
while (not end of Gen input file) loop
case Token is
when feature token =>
call Matrix_Pkg.Count_Feature (send Token)
when start token =>
call Matrix_Pkg.Start_Combination
when end token =>
call Matrix_Pkg.End_Combination
when others =>
display error message
end case
call Lex_Pkg.Yylex (xreturn Token)
end while loop
call ALIANT Wrapup
PASSED VARIABLES: None.
RETURNS: None.
GLOBAL VARIABLES USED: None.
GLOBAL VARIABLES CHANGED: None.
FILES READ: None,
FILES WRITTEN: None.
HARDWARE INPUT: None.
HARDWARE OUTPUT: CRT.
MODULES CALLED:
Matrix_Pkg.Initialize_Matrix
Features_Pkg.Load_Features_Table
Lex_Pkg.Opengen
Text_I0.new_page
Text_IO.new_line
Text_I0.put_line
Lex_Pkg.Yylex
Matrix_Pkg.Count_Feature
Matrix_Pkg.Start_Combinat.on
Matrix_Pkg.End_Combination
ALIANT Driver.ALTANT Wrapup
REQUIRED LIBRARY UNITS:
Matrix_Pkg
Features_Pkg
Parameter_Pkg
Text_I0

D-35

- Lex_Pkg

-— AUTHOR: Capt James S. Marx
~~ HISTORY: None.

-- ORDER-OF ANALYSIS: O(n##3) since t! procedure is dominated by the
- order-of for ALIANT_Wrapup.

with Matrix_Pkg;

with Features_Pkg;

with Parameter_Pkg;

with text_io;

with Lex_Pkg;

procedure ALIANT Driver is

Token : natural;
Max_Features : constant Parameter_Pkg.Parameter_Type
:= Parameter_Pkg.Get_Max_Features;

~-= MODULE HEADER

-- DATE: 31 Aug 90

-- VERSION: 1.0

-- NAME: ALIANT Wrapup

~- DESCRIPTION: This procedure is local to the ALIANT Driver and was
- created to eliminate duplication of code. It contains those actions
-- that take place after combination processing is completed.
-~ ALGORITHH:

- close the Gen input file

- call Matrix_Pkg.Display_Matrix

- call Matrix_Pkg.Load_ Database

- display a normal termination message

—-— PASSED VARIABLES: None.

-- RETURNS: None.

~— GLOBAL VARIABLES USED: None.

-— GLOBAL VARIABLES CHANGED: None.

~- FILES READ: None.

~~ FILES WRITTEN: None.

-~ HARDWARE INPUT: None.

-- HARDWARE OUTPUT: CRT.

-~ MODULES CALLED:

— Text_I0.new_line

- Lex_Pkg.Closegen

- Matrix_Pkg.Display._Matrix

-~ Matrix_Pkg.Load_Database

- Text_IO.put_line

~-— CALLING MODULES: ALIANT_Driver

D-36

~= AUTHOR: Capt James S. Marr
== HISTORY: None.

-—- ORDER-OF ANALYSIS: O(n**3) since this procedure is dominated by the
- order—-of for Matrix_Pkg.Display Matrix.

procedure ALIANT Wrapup is
begin

~- CLOSE THE GEN INPUT FILE, --
~= CALL DISPLAY_MATRIX AND LOAD_DATABASE, --
-= THEN DISPLAY NORMAL TERMINATION MESSAGE --

text_io.new_line;

Lex_Pkg.Closegen;

Matrix_Pkg.Display_Matrix;
Matrix_Pkg.Load_Database;

text_io.new_line;

text_io.put_line (" skkkkkskkikikkkkikiokkkiiokkk) -
text_io.put_line (" ** Exiting ALIANT drivexr #**");
text_io.put_line (" skkkkkdkkskiokiokiokiokihrikkohk!)

end ALIANT Wrapup;
begin
-- PERFORM INITIALIZATIGN PROCEDURES AND OPEN THE GEN INPUT FILE --
Matrix_Pkg.Initialize Matrix;
Features_Pkg.Load_Features_Table;
Lex_Pkg.Opengen;
~- DISPLAY PROCESSING MESSAGE --
text_io.new_page;
text_io.new_line;

text_io.put_line (" #kikkkkioriiikdkidokdkikskkkkimkkmbkkkbrtkkrih k) ;
text_io.put_line (" #* Processing Gen ccmbinations, please wait... **");

text_io.put_line (! skkkkikskiokikkiiokikkkiokkkkokkikoddkiokkiorkdk bk ikl kokkdkk’) |

~- PROCESS EACH TOKEN IN THE GEN INPUT FILE UNTIL END-OF-FILE -~

Token := Lex_Pkg.Yylex;
while (Token /= 0) loop

-~ IF THE TOKEN IS A FEATURE, CALL COUNT_FEATURE --

if (Token >= 1) and (Token <= Max_Features) then
Matrix_Pkg.Count_Feature (Token);

~-— OTHERVWISE, TAKE THE APPROPRIATE ACTION --

else
case Token is
when 995 => Matrix_Pkg.Start_Combination;
when 996 => Matrix_Pkg.End_Combination;
when 998..999 => null; -- blanks and carriage return
when others =>
text_io.new_line;
text_io.put_line (" ** Undefined Token #" &
integer’image (Token) &
", regenerate lex_spec file from input grammar. **");
end case;
end if;
Token := Lex_Pkg.Yylex;
end loop;

ALIANT Wrapup;

exception
vhen Parametexr_Pkg.Fatal_Exception =>
text_io.new_line;
text_io.put_line (" skkkkkkikkkikikkkkikrikk" &
"***************************");
text_io.put_line (" ** Exiting ALIANT driver" &
" due to fatal exception **");
text_io.put_line (' skkkskkkiokikkkkikkkikkikk! &
Toksok ok ok ok ok ok ok kR kb ok kR ko k !) |
when Parameter Pkg.Partial_Exception => ALIANT_ Wrapup;
when others =>
text_io.new_line;
text_io,put_]_ine (" o 3k ok ok ok ok o s o e ok e ok ok ok ok sk ok sk ok ok ke kok Kok Kok !t &
Thiksk ok kR kR ok ook ok kokokkok ') 5
text_io.put_line (" ** Exiting ALIANT driver due " &
"to unknown exception **");
text_io.put_line (" skkkakokkdkioksokkkkkkkikdkkkksk! §
Pk kb sk ok ok kR Aok bk okok) 5
text_io.new_line;
raise;

end ALIANT_Driver;

D-38

Appendix E. Input Grammars

This appendix contains the input grammars used in the ALIANT prototype research.
The grammars are in a format compatible with the Gen software, which is used to generate
alid “sentences” or programs described by a grammar. The first grammar, Adagenl, was
annotated by reducing the right hand side of each Ada production to a literal string in
quotes, if it contained any terminal symbols. As a result, most productions are never
“reached” during test case generation. They are left in the grammar for consistency and
later modification. The second grammar, Adagen2, was annotated using the list of some
297 “primary features” as a guide. There are still many productions that are never reached
during test case generation. Some of the Adagen2 productions include alternative symbols

with specified randomness percentages.

E.1 Adagen1 Grammar

JRERRkrkrnk bkl rkk ADAGENT oksdokbkskdor ok ok ok sokokskokok btk kb kokkoksk ok /
graphic_character = ("graphic_character ")

basic_graphic_character = ("basic_graphic_character ")

basic_character = ("basic_character ")

identifier = ("identifier ")

letter_or_digit = ("letter_ox_digit ")

letter = ("letter ")

numeric_literal = (decima'l_literal | % based_literal)

decimal_literal = ("decimal_literal ")

integer = ("integer ")
exponent = ("exponent ")
based_literal = ("based_literal ")
base = ("base ")
based_integer = ("based_integer ")
extended_digit = ("extended_digit ")
character_literal = ("character_literal ")
string_.literal = ("string_ literal ")
pragma = ("pragma ")
argument_association = ("argument_association ")
basic_declaration = (

object_declaration | % number_declaration

| % type_declarasion | ¥ subtype_declaration

% subprogram_declaration | % package_declaration
prog P 4
% task_declaration | % generic_declaration

!

|

| % exception_declaration | % generic_instantiation

| % renaming_declaration | % deferred_constant_declaration)

object_declaration = ("object_declaration ")
number_declaration = { "number_declaration ")

identifier_list = ("identifier_list ")

type_declaration = (full_type_declaration
| % incomplete_type_declaration | % private_type_declaration)

full_type_declaration = ("full_type_declaration ")
type_definition = (
enumeration_type_definition | ¥ integer_type_definition
| % real_type_definition | % array_type_definition
| % record_type_definition | % access_type.definition
| % derived_type_definition)
subtype_declaration = ("subtype_declaration ")

subtype_indication = (“subtype_indication ")

type_mark = ("type _mark ")

constraint = (
range_constraint | % floating_point_constraint
| % fixed_point_constraint | % index_constraint
| % discriminant_constraint)

BN ERNTY

[ANERTN

derived_type_definition = ("derived_type_definition ")

s

range_constraint = ("range_constraint ")

range = ("range ")

P PR TR

enumeration_type_definition = ("enumeration_type_definition ")

enumeration_literal_specification = ("enumeration_literal_specification ")
enumeration_literal = ("enumeration_literal ") ?
integer_type_definition = ("integer_type_definition ")

real_type_definition = (
floating_point_constraint | % fixed_point_constraint)

floating_point_constraint = (
floating_accuracy_definition ("" | % range_constraint))

floating_accuracy_definition = ("floating_accuracy_definition ")

fixed_point_constraint = (
fixed_accuracy_definition ("" | % range_constraint))

fixed_accuracy_deiinition = ("fixed_accuracy_definition ")

array_type_definition = (
unconstrained_array_definition | % constrained_array_definition)

unconstrained_array_definition = ("unconstrained_array_defanition ")

constrained_array_definition = ("constrained_array_definition ")

index_subtype_definition = ("index_subtype_definition ")

index_constraint = ("index_constraint ") i
discrete_range = ("discrete_range ")
record_type_definition = ("record_type_definition ")
component_list = ("component_list ")

component_declaration = ("component_declaration ")

E-3

component_subtype_definition = ("component_subtype_definition ")
discriminant_part = ("discriminant_part ")
discriminant_specification = ("discriminunt_specification ")
discriminant_constraint = ("discriminant_constraint ")
discriminant_association = ("discriminant_association ")
variant_part = ("variant_part ")
variant = ("variant ")
choice = ("choice ")
access_type_definition = ("access_type_definition ")
incomplete_type_declaration = ("incomplete_type_declaration ")
declarative_part = (

(" | % basic_declarati ._item more_basic_decl)

¢ " | % later_declarative_item more_later_decl))

/**xxkx more_basic_decl and more_later_decl added for Gen *kkkkkx/

more_basic_decl = (" | Y% basic_declarative_item more_basic_decl)
more_later_decl = ("" | Y% later_de:larative_item more_later_decl)

basic_declarative_item = (basic_declaration
| % representation_clause | / use_clause)

later_declarative_item = (body
| % subprogram_declaration | ’ package_declaration
| /4 task_declaration | % generic_declaration
| % use_clause | % generic_instantiation)
body = (proper_body | % body_stub)
proper_body = (subprogram_body | % package_body | % task_body)
nare = (simple_name
| % character_literal | % operator_symbol
| % indexed_component | % slice
i % selected_component | % attribute)

simple_name = (identifier)

prefix = (name | % function_call)

E-4

[AN lLﬂJ

indexed_component = (“indexed_component ")

slice = { "slice ")

selected_component = { "selected_component ™)
selector = ("selector ")

attribute = ("attribute ")

attribute_designator = (“attribute_designator ")
aggregate = { "aggregate ")

component_association = ("component_association ")
expressicn = ("expression ")

relation = ("relation ")

simple_expression = ("simple_expression ")

term = ("term ")

factor = ("factor ")

primary = ("primaxy ")

logical_operator = { "logical_operator ")

relational_operator = ("relational_operator ")

tinary_adding_operator = ("binary_adding_operator ")

unary_adding_operator = ("unary_adding_operator ")

multiplying_operator = ("multiplying_operator ")

highest_precedeuce_operator = { "highsst_precedence_operator ")

type_conversion = / "type_conversion ")
qualified_expression = ("qualified_expression ")

allocator = ("allocator ")

sequence_of_statements = (statement ("" | % statement more_statements))

/®kkkkkk more_statements added for Gen ¥¥xkx/

more_statements = (M | Y% statement more_statemeuats)

o

L L s b

o

St e LD B

L2t L] b et oma e

e B b B W e NI A e L ir B S IR LB Pl W S NS Vo G B SN e D A S S P L U W L i T

TPt]

benl Thb o B A e

statement = (
(»" | % label more_labels) (simple_statement | ¥ compound_statement))

/¥ rexkx more_labels added for Gen *dkiskx/
more_labels = ("" | % label more_labels)
simple_statement = (null_statement

| % assignment_statement | % procedure_call_statement

| % exit_statement | % return_statement

| 4 goto_statement | % entry_call_statement

| % delay_statement | % abort_statement

| % raise_statement | % code_statement)
compound_statement = (

if_statement | % case_statement

| % loop_statement | % block_statement

| % accept_statement | ¥ select_statement)
label = ("label *)
null_statement = ("null_statement ")
assignment_statement = ("assignment_statement ")
if_statement = ("if_statement ")
condition = ("condition ")
case_statement = ("case_statement ")
case_statement_alternative = ("case_statement_alternative ")
loop_statement = ("loop_statement ")
iteration_scheme = ("iteration_scheme ")
loop_parameter_specification = ("loop_parameter_specification ")
block_statement = ("block_statement ")
exit_statement = ("exit_statement ")
return_statement = ("return_statement ")
goto_statement = ("goto_statement ")

subprogram_declaration = (subprogram_specification)

subprogram_specification = ("subpregrzm_specification ")

E-6

designator = (identifier | % operator_symbol)
operator_symbol = (string_literal)

formal_part = ("formal_part ")
parameter_specification = ("parameter_specification ")

mode = ("mode ")

subprogram_body = ("subprogram_body ")

procedure_call_statement = ("procedure_call_statement ")

function_call = { "function_call ")

|

actual_parameter_part = ("actual_parameter_part ")

parameter_association = ("parameter_association ")

S s L

formal_parameter = ("formal_parameter ")

actual_parameter = ("actual_parameter ")
package_declaration = (package_specification)
package_specification = ("package_specification ")
package_body = ("package_body ")

private_type_declaration = ("private_type_declaration ")

deferred_constant_declaration = ("deferred_constant_declaration ")

use_clause = ("use_clause ")

renaming_declaration = ("renaming_declaration ")

E

task_declaration = (task_specification)

task_specification = ("task_specification ") :

o

task_body = ("task_body ")

e g

entry_call_statement = ("entry_call_statement ")

FESRITEN

accept_statement = ("accept_statement ") :

Wadl Wiy

entry_index = (expression)
delay_statement = ("delay_statement ")

select_statement = (selective_wait
| % conditional_entry_call | ¥ timed_entry_call)

selective_wait = ("selective_wait ")
select_alternative = ("select_alternative ")

selective_wait_alternative = (accept_alternative
| % delay_alternative | ! terminate_alternative)

accept_alternative = (
accept_statement ("" | % sequence_of_statements))

delay_alternative = (
delay_statement ("" | Y sequence_of_statements))

terminate_alternative = ("terminate_alternative ")
conditional_entry_call = ("conditional_entxry_call ")
timed_entry_cal? ("timed_entry_call ")
abort_statement = ("abort_statement ")

compilation = ("START_COMPILATION: "
(" | % compilation_unit more_units) ":END_COMPILATION \n")

/*x*% more_units added for Gen *dkkk/
more_units = (" | % compilation_unit more_units)
compilation_unit = (
context_clause library_unit
| % context_clause secondary_unit)
library_unit = {
subprogram_declaration | % package_declaration
| % generic_declaration | ! generic_instantiation
| % subprogram_body) -
secondary unit = (library_unit_body | % subunit)

library_unit_body = (subprogram_body | % package_body)

context_clause = (
"% (with_clause ("" | % use_clause more_use) comtext_clause))

E-8

/**xxxkx more_use added for Gen Hkkkx/
more_use = ("" | % use_clause more_use)
with_clause = ("with_clause ")
body_stub = ("body_stub ")
subunit = ("subunit ")
exception_declaration = ("exception_declaration ")
exception_handler = ("exception_handler ")
exception_choice = ("exception_choice ")
raise_statement = ("raise_statement ")
generic_declaration = (generic_specification)
generic_specification = (

generic_formal_part subprogram_specification

| % generic_formal_part package_specification)
generic_formal_part = ("generic_formal_part ")
generic_parameter_declaration = ("gene 'ic_parameter_declaration ")
generic_type_definition = ("generic_type_definition ")
generic_instantiation = ("generic_instantiation ")
generic_actual_part = ("generic_actual_part ")
generic_association = ("generic_association ")
generic_formal_parameter = ("generic_formal_parameter ")
generic_actual_parameter = ("generic_actual_parameter ")

representation_clause = (
type_representation_clause | ¥ address_clause)

type_representation_clause = (length_clause
| % enumeration_representation_clause

) - ropgray) Tmsema
! ¥ receoxd_representation_clauss)

length_clause = ("length_clause ")

enumeration_representation_clause = ("enumeration_representation_clause ")

E-9

record_xepresentation_clause = ("record_representation_clause ")
alignment_clause = ("alignment_clause ")

component_clause = { "compoient_clause ")

address_clavuse = ("address_ciause ")

code_statement = (“code_statement ")

5.2 Adagen? Grammar

[FRERR kb kA kR kR ook ADAGENZ doksokdok ko ke msbo sk ko koo ok ook ok |
graphic_chaxacter = (“graphic_character ")

basic_graphic.character = ("basic_graphic_character ")

basic¢_character = ("basic_character ")

identifier = ("“identifier ")

letter or digit = { "letter_or digit *)

lettexr = ("letter ")

numexie_literal = (decimal_literal | Y based_literal)

H

decimal, literal = ("integer_ literal " | % "real_literal ")
integer = ("integexr ")

exponent = ("exponent ")

based_literal = (“based_litexal ")

base = { "base ")

based_integer = ("based_integer ")

extended digit = { "extended digit ")

character_literal = ("character_literal ")

string_liferal = ("string literal ")

E-10

L

g iy

S BT

pragma = ("pragma " | Y "pragma:argument_association " | %
"predef_pragma ")

argument_association = ("argument_association ")

basic_declaration = (

object_declaration | ¥ 14 number_declaration

| %4 3 type_declaration | % 14 subtype_declaration

| % 14 subprogram_declaration | % 10 package_declaration
| % 10 task_declaration | % 7 generic_declaration
I
I

b b ot ary A N 8 0 o A e

% 8 exception_declaration | % 8 generic_instantiation
% 7 renaming_declaration |) 5 deferred_constant_declaration)

AL ARy Wy

ERVR

object_declaration = ("object_decl " | % 35 "object_init_val " [% 30
"object_init_val_constrained_arxray " | % 25 "constant_decl ") :

numbexr,_declaration = ("number_decl ")
identifier_list = ("identifiexr_list ")

type_declaration = (full_type_declaration
| % 50 incomplete_type_declaration | ¥ 15 private_type_declaration)

full_type_declaration = ("full_type_decl " ("" | % discriminant_part))

type_definition = (
enumeration_type_definition | % integer_type_definition
| % real_type_definition | % array_type_definitior
| % record_type_definition | % access_type_definition
| % derived_type_definition)

subtype_declaration = ("subtype_decl " subtype_indication)
subtype_indication = ("subtype_indic * ("" | Y% constraint))
type_mark = ("type_mark ")
constraint = (

“range_constraint | % floating_point_constraint

| % fixed_point_constraint | % index_constraint
| % discriminant_constraint)

derived_type_definition = ("derived_type_def ")
range.constraint = (range)

range = ("range_attribute " | ¥ "explicit_range ")
enumeration_type_definition = ("enum_type_def ")

enumeration_literal_specification = ("enumeration_literal_specification ")

E-11

enumeration_literal = ("enumeration_literal ")
integer_type_definition = ("integer_type_def ")

real_type_definition = (
"floating_point_type_def " | ¥ "fixed_point_type_def ")

floating_point_constraint = (
"floating_point_constraint " ("" | % range_constraint))

floating_accuracy_definition = ("floating_accuracy_definition ")

fixed_p.int_constraint = (
"fixed_point_constraint " ("" | % range_constraint))

fixed_accuracy_definition = ("fixed_accuracy_definition ")

array_type_definition = (("array_type_def " | % "array_of:access " | Y%
"array_of:boolean " | ¥ "“array_of:integer " | % "array_of:xreal " | Y%
"array_of:record " | % "array_of:task ")

(unconstrained_array_definition | % constrained_array_definition))
unconstrained_array_definition = ("unconstrained_array_def ")
constrained.array_definition = ("constrained_array_def ")
index_subtype_definition = ("index_subtype_definition ")
index_constraint = ("index_constraint ")
discrete_range = ("discrete_range ")
record_type_definition = (("record_type_def " | % "record_of:access " | %

"record_of:array " | } "record_of:record " | ¥ "record_of:task ")

component_list)

component_list = (component_declaration | % 50 "null_component_list " | % B
(¢ " | % component_declaration) variant_part))

component_declaration = ("component_decl:default " | ¥
"component_decl:no_default ")

component_subtype_definition = ("component_subtype_definition ")
discriminant_part = (discriminant_specification)

discriminant_specification = ("discriminant_spec:default " | ¥
"discriminant_spec:no_default ")

I'd

discriminant_constraint = ("discriminant_constraint ")

E-12

v]

g

PRERRTRNL

A

AANIS E

Lkl S kg

s

RN

e

L

SR g S

TR

BRI M b g Lk

PR

FRC R TETIN

AR AL AR

oAl L LP A et Bt

d
[
£

e L3 S SN 1 D S S LI e

discriminant_association = ("discriminant_association ")
variant _part = ("variant_part " ("" | % variant))

variant = (choice component_list)

choice = ("variant_choice " | % "variant_choice_others ")

access_type_definition = ("access_type_def " | % "access_to:array " | %
"access_to:record " | % "access_to:task ")

incomplete_type_declaration = ("incomplete_type_decl "™ ("" | ¥

discriminant_part))

declarative_part = (
(" | % basic_declarative_item mcre_basic_decl)
(" | % later_declarative_item .nore_Ytev_decl))

/*¥*x*x more_basic_decl and more_later_dec: added for Gen ¥¥kk¥xx*/
more_basic_decl = (" | % 80 basic_declarative_item more_basic_decl)

more_later_decl = ("" | % 80 later_declarative_item more_later_decl)

basic_declarative_item = (basic_declaration
| /i 60 representation_clause | % 20 use_clause)

later_declarative_item = (body
| % 20 subprogram_declaration | % 20 package_declaration
| /4 20 task_declaration | % 10 generic_declaration
| 4 13 use_clause | % 4 generic_instantiation)

body = (proper_body | % 80 body_stub)

proper_body = (subprogram_body | % 50 package_body | % 30 task_body)

name = (simple_name
| % character_literal | % operator_symbol
| % indexed_component | % slice
| % selected_component | % attribute)
simple_name = (identifier)
prefix = (name | % function_call)

indexed_component = ("indexed_component ")

slice = ("slice ")

selected_component = ("selected_component " prefix selector)

E-13

i

7
b
E
Bl
b
El
E
B
E
e
3

Sl

it il DL b gt o b e

L Ll b by 13

selector = (simple_name | / character_literal | %
operator_symbol | % "selector_all ")

attribute = ("attribute " | % "predef_attr ")

attribute_designator = ("attribute_designatoxr ")

aggregate = (component_association)

component_association = ("aggregate " | % "named_component_association ")

expression = (relation (" | % ((logical_operator | % 60 "andthen " | ¥% 20
"orelse ") relation)))

relation = (simple_expression ((relational_operator simple_expression) | %
w9 (("membership_test_in " | % "membership_test_not_in ")
(xange | % type_mark)))))

simple_expression = ("simple_expression " (" | ¥ unary_adding_operator)
term (" | % (binary_adding_operator term)))

term = (factor ("" | % (multiplying_operator factor)))

factor = ((primary ("" | % ("exponentiation * primary))) | %

("absolute_value " primaxy) | % ("not_operator " primary))

primary = (numeric_literal | % "auli_access_value " | ¥ aggregate | %
string_literal | % name | % allocator | % function_call |
type_conversion | % qualified_expression | % "parenthesized_expr ")

logical_operator = ("and_operator " | % "or_operator " | % "xor _operator ")
relational_operator = ("equality " | % "inequality " | % "less_than * | %
"less_than_or_equal_to " | % "greater_than " | %

"greater_than_or_equal_to ")

binary_adding_operator = ("addition " | % "subtyaction " | ¥ "catenation ')

unary_adding_operator = ("unary_addition " ' Y% "unary_miaus ")

multiplying_operator = ("multiplication " | % "divigion " | %
"mod_operator " | ¥ "rem_operator *)

highest_precedence_oporator = ('exzponentiation " | | "absolute_valne " | %

"not_operator ")
type_conversion = ("type_conversion ")

qualified_expression = ("qualified_expr ")

P VR L R U ST DL TAN TR LG YO AN R TP - 10 LR TP TR, L TN LIS P S P R AR

[ENY

i
i

L APt

i

allocator = ("alloc:qualified_expr " | % "alloc:subtype_indic_constr " 3
| % "alloc:subtype_indic_no_constr ")

sequence_of_statements = (statement ("" | % statement more_statements))

s s

cans t e

/¥kxkkxk more_statements added fox Gen *#kix/

more_statements = ("" | % 80 statement more_statements)

statement = (;
(" % label more_labels) (simple_statement | ¥ compound_statement))

/*skxxkx more_labels added foxr Gen skksdkx/
moxe_labels = ("" | % 80 label more_labels)

simple_statement = (null_statement
| % assignment_statement | % procedure_call_statement
| % exit_statement | % return_statement
| % goto_statement | % entry_call_statement
| % delay_statement | % abort_statement
| % raise_statement | % code_statement)

TR T P T L L

0

Aagte

RN TR T LA

compound_statement = (
if_statement | Y case_statement
| % loop._statement | % block_statement
| % accept_statement | % select_statement)

Ak

o

£ derdit ¥ R L)

label = ("label ")

i dind

null_statement = ("null_statement ")
assignment_statement = ("assignment_statement " exprescion)

if_statement = ('if_statement " sequence-of_statements)

condition = ("condition ")
case_statement = ("case_statement ' expression)
case_statement_alternative = ("case_statement_alternative ”)

loop_statement = ("loop_statement " ("" | J iteration_scheme)
sequence_of_statements)

iteration_scheme = (("iteration_scheme:for "
leop_parameter_specification } | ¥ ("itsration.scheme:while

condition))

loop_parameter_specification = ("loop_pa¥am_spec:up " | %
"loop_param_spec:down ")

E-15

block_statement = ("block_statement " ("" | ! declarative_part)
sequence_of_statements ("" | % exception_handler))

exit_statement = ("exit_statement ")
return_statement = ("return_statement ")
goto_statement = ("goto_statement ")
subprogram_declaration = (subprogram_specification)

subprogram_specification = (("subprogram_decl:procedure " | ¥
"subprogram_decl:function ")} ("" | % formal_part))

designator = (identifier | % operator_symbol)
operator_symbol = ("user_defined_operator ")

formal_part = (parameter_specification)

parameter_specification = ("subprog_param_spec:default " | Y%
"subprog._param_spec:in " | % "subprog_param_spec:in default " | Y%
"subprog._param_spec:in_out " | % "subprog_param_spec:no_default " | ¥

"subprog_param_spec:out ")

mode = ("mode_in " | % "mode_in_default " | ¥
"mode_in_out " | % "mode_out ")

subprogram_body = (("procedure_body " | % "function_body ") (" | %
declarative_part) sequence_of_statements ("" | % exception_handler))

procedure_call_statement = ("procedure_call_statement ")

function_call = ("function_call ")

actual_parameter_part = ("actual_parameter_part ")

parameter_association = ("parameter_association ")
formal_parameter = ("formal_parameter ")
actual_parameter = ("actual_parameter ")

package_declaration = (package_specification)

package_specification = ("package_spec " (™" | ¥ basic_declarative_item))

package_body = ("package_body " ("" | % basic_declarative_item)
sequence_of_statements ("" | % exception_handler))

Sl ey iy n

S

oL g,

A b LS

s

2t R RN S N o A A N EON e b AR

£ 3L LA 8 D BN e T LM S M AN R o N

3
3
-
¥
%
¢
4
d
z
2
3
3
2
Z
Z
&
3
E4
2
3
3
]
z

Al

M

A S P B L L B

private_type_declaration = ({ "private_type_decl " | ¥
"limited_private_type_decl ")} ("" | % discriminant_paxt))

deferred_constant_declaration = ("deferred_constant_declaration ")

use_clause = ("use_clause ")

renaming_declaration = ("rename:entxry " | % "rename:exception " | Y%
"rename:object " | % "rename:package " | Y "rename:subprog " | Y%

"rename:subprog_or_entxy ")

task_declaration = (task_specification)

task_speciflcation = (("task_spec " | % "task_type_spec ")
(" | % entry declaration) ("" | ¥ representation_clause))
task_body = (“task.body " (“" | % declarative_part) sequence_of_statements
("™ | % exception_handler))
entry_declaration = { "entry. decl " | % "entry_ family_decl "
{ "entry_param_spec " | % "entry_param_spec:default " | %
y y-p P
"entry_param_spec:in " | % "entry_param_spec:in_default " | ¥
"entry_param_spec:in_out " | ¥ "entry_param_spec:no_default " | ¥

“entry_param_speciout "))
entry_call_statement = { "entry_call_statement ")
accept_statement = ("accept_statement ")
entry_index = (expression)
delay_statement = (“delay_statement ")

select_statement = (selective_wait
| % conditional_entry_call | % timed_entry_call)

selective _wait = ("sel_wait:accept_alt " | ¥ "sel_wait:accept_alt_guarded "
| % "sel_wait:;accept_alt_unguarded " | ¥ "sel_wait:delay_alt " | %
"sel_wait:delay.alt_guarded " | % "sel_wait:delay_alt_unguarded " | %
"sel_wait:else_part " | % "sel_wait:term_alt " | %
"sel_wait:term_alt_guarded " | % "sel_wait:term_alt_unguarded ")

select_alternative = ("select_alternative ")

selective_wait_alternative = (accept_alternative
| % delay_alternative | % terminate_alternative)

accept_alternative =
accept_statement ("" | % sequence_of_stateme'.ts))

delay_alternative = (

D T AT

e s

R ATy e

il i 8 L

L0058 P L MR R

BRSP4

et

3
4
4
k=)

il A SRS L A bl 2o e

3
B
3
3
b
5
2

XL LTI

LTINS N

i
3
3
3
4
3
:
-
A
2
i
a
2
3

Gl L A S R A R e

A Fatai L

delay_statement (" | % sequence_of_statements))
terminate_alternative = ("terminate_alternative ")

" conditional_entry_call = ("conditional_entry_call " entry_call_statement
sequence_of_statements)

timed_entry_call = ("timed_entry_call " entry_call_statement
delay_alternative)

abort_statement = ("abort_statement ")

compilation = ("START_COMPILATION: "
(" | % 0 compilation_unit more_units) ":END_COMPILATION \n")

/*¥*% more_units added for Gen *¥¥¥x¥/
more_units = ("™ | % 90 compilation_unit more_units)
compilation_unit = (
context_clause library_unit
| % context_clause secondary_unit)
library_unit = (
subprogram_declaration | % package_declaration
| % generic_declaration | % generic_instantiation
| % subprogram_body)
secondary_unit = (library_unit_body | % subunit)

library_unit_body = (subprogram_body | % package_body)
g g y

context_crause = (
wo i Y (with_clause ("" | % use_clause more_use) context_clause))

/¥¥%xkk*x more_use added for Gen Hkkkk/
more_use = { "" | % 80 use_clause more_use)
with_clause = ("with_clause ")

body_stub = ("procedure_body_stub " | % "function_body_stub " | ¥
"package_body_stub " | % "task_body_stub ")

subunit = ("procedure_subunit " |) "function_subunit "
| % "package_subunit " | ¥ "task_subunit ")

exception_declaration = ("exception_decl ")

exception_handler = ("exception_handler " exception_choice
sequence_of_statements)

E-18

exception_choice = ("exception_choice_others " | ¥ "predef_except ")

raise_statement = ("raise_statement ")

generic_declaration = (generic_specification)

generic_specification = (generic_formal_part ('"gen_package_spec " | %
"gen_subprog_spec " | % "gen_subprog_spec:function " | ¥

"gen_subprog_spec:procedure "))

generic_formal_part = (generic_parameter_declaration)

generic_parameter_declaration = ("gen_formal_obj:default " | ¥
"gen_formal_obj:in " | % "gen_formal_obj:in_default " | Y%
"gen_formal_obj:in_out " | ¥ "gen_formal_obj:no_default " | Y%
"gen_formal_part " | % "gen_formal_subprog " | Y
"gen_formal_subprog:box_default " | % "gen_formal_subprog:nm_default " | ¥
"gen_formal_type " | % "gen_formal_type:access " | %
"gen_formal_type:array " |) "gen_formal_type:discrete " | ¥
"gen_formal_type:fixed_point " | % "gen_formal_type:floating_point * | %
"gen_formal type:integer " | % "gen_formal_type:lim_private " | %

"gen_formal_type:private ")
generic_type_definition = ("generic_type_definition ")

eneric_instantiation = (("gen_function_instantiation " | %

13 g
"gen_package_instantiation " | % "gen_procedure_instantiation * | %
"gen_subprog_instantiation ") ("" |) generic_actual_part))

generic_actual_part = ("gen_actual_object " | ¥ "gen_actual:subprog " | Y
"gen_actual:type " | ¥ "gen_actual:type_access " | %
"gen_actual:type_array " | % "gen_actual:type_discrete " | Y
"gen_actual:type_fixed_point " | % “gen_actual:type_floating_point " | %
"gen_actual:type_integer ")

generic_association = ("generic_associatior ')

eneric_formal_parameter = ("generic_formal_,.rametexr ")
g P g v

generic_actual_parameter = ('generic_actual_parameter ")

representation_clause = (
type_representation_clause | % address_clause)

type.representation_clause = (length_clause
! % enumeration_representation_clause

| % record_representation_clause)

length_clause = ("length_clause " | J "length_clause:size " | %
"length_clause:small " | % "length_clause:strng_size " |

E-19

"length._clause:strg_size_access " | % "length_clause:strg_size_access " | ¥ -
"length_clause:strg_size_task ")

enumeration_representation_clause = { "enum_repr_clause ")

record_representation_clause = ("record_repr_clause " ("" | Y%
alignment_clause) ("" | % component_clause))

alignment_clause = ("alignment_clause ") :

component_clause = ("component_clause ")

address_clause = ("address_clause ")

code_statement = ("code_statement ")

E-20

Appendix F. ALIANT Operating Instructions and Oulput

This appendix contains the operating instructions for the ALIANT prototype and

|
|
i
R T I AW R B e "!";:E...'JAQV,.&'.{‘('ALJ

samples of screen/file output. The first two sections contain the step by step interactive
and batch operating instructions. The third sectio contains a complete output sample
from an interactive ALIANT “session”. Finally, the fourth secion contains sample listings

for the ALIANT support files not provided elsewhere.

F.1 Interactive Operating Instructions

The ALIANT prototype may be execnted in interactive mode or batch mode. The
interactive mode will be explained first. To execute ALIANT in interactive mode, erier

the following statement:

runa* <grammar filename> <number of combinations>

The statement above includes two parameters. The first parameter is the filename of
the input grammar without the “.gen” extension. The extension will be automatically
appended to the first parameter; therefore the actual filename used in this example is
“<grammar filename>.gen”. The input grammar must be in Gen compatible format. The
second parameter is the requested number of combinations to generate. This number must
be greater than zero to be accepted by the ALIANT prototype. If the input grammar file-
name does exist and the number of requested combinations is greater than zero, ALIANT

will begin execution. i

The first stage of the prototype is the generation of the feature combinations by Gen. ﬂ
The following message is displayed while Gen is executing: {
-~ Gen execution in progress =-- ;
When Gen is finished, the ALIANT combination processing begins. For every tenth
combination processed by the ALIAMT Ada code, a dot is displayed on the screen as shown E

in the following example:

ok ok ok sk e ok sk ok Sk sk ok sk ok ke ke sk ok sk sk skok ok ok ok ok skokok sk ok sk sk ok ok

** ALTANT initialization in progress *x ;
wokok ko skotokkokokkokokok ok ok okl KRk sk ok ok KKKk ;

<newpage>
okokokkokokkRokkk Rk kR ok okokok kot kiR ok sk ok sokkok ok kR Rk K

** Processing Gen combinations, please wait... **
oRokoksk ok ok skokkokok sk kol sk otokok sk ko Kk KKk sk ok Kok ok Kok ok o

D I A I N I I AR S R R

When all combinations have been processed, the ALIANT summary statistics are

displayed, an audible tone sounds, and the user is prompted for input as shown below:

*kkkx ALIANT Processing Statistics sxkkx
Number of combinations processed: 200
Null combination count: O

Duplicate combination count: 78
Resulting combinations: 122

Kekskokskdok ok ookt ok ool ok AR RoR Kk Rk K sk KK K

T

Al e KR e o b e

oo omnebn]

Enter ‘y’ to SELECT combinations for display >>

-2

R T vha e GO e S ha b

PRI AT

The statistics show how many combinations were processed. The total number processed
is further subdivided into the number that were null, duplicate or resulting combinations.
The audible tone signals the completion of processing, which is helpful if a long interactive
session is running “unattended”. At this point, the user must decide if he/she wants to
select combinations for display. If no selection is desired, a carriage return or any input not
starting with an upper or lower case Y will pass control to the “load database” prompt.

However, entering an upper or lower case Y will cause the following prompt to be displayed:

Enter duplication threshold >>

To select combinations for display, two threshold values must be entered. As indicated
by the display above, the first threshold is the duplication threshold. Combinations will
be selected that have duplication counts greater than or equal to the specified duplication
threshold. The number input must be a natural number. After entering a valid threshold
value, a similar prompt is displayed for the feature threshold. Combinations will be selected

that contain no more features than the specified feature threshold. This number must also

be a natural number.

Enter feature threshold >>

After both threshold values have been entered, the number of combinations that

satisfy both limits is displayed followed by the paging prompt:

There are 9 combinations with a duplication count >= 4,

F-3

[T

and a feature count <= 50.

Enter ‘y’ to DISPLAY selected combinations,
or ‘p’ to DISPLAY with paging >>

To display selected combinations continuously without paging, an upper or lower case Y
is entered. If paging is desired, an upper or lower case P is entered. During the paging

option, the user is given the opportunity to terminate paging with the following prompt:

Press RETURN to continue paging,
or enter ‘q’ to quit paging >>

If there were no combinations to display, the user chose not to display combinations,

or combination display is complete, the following prompt is redisplayed:

Enter ‘y’ to SELECT combinations for display >>

The selection/display process can be repeated or terminated at this poirt by entering the

appropriate option.

When the selection/display process is finally terminated, the following prompt is

displayed for the database option:

Enter ‘y’ to load AFIS database >>

If this option is selected, the duplication and feature threshold values are entered as before

using the following two prompts:

;
E
3
%
3
G
F
1
?

I R R

o R A s s

ARl

W Wk a2

Enter duplication threshold for database >>
<newpage>

Enter feature threshold for database >>

After successful entry of these threshold values, the database load is started with the first
message shown below, and completed with the second message shown below. The ALIANT

session is then concluded with a normal termination message.

Loading AFIS database...

...The AFIS database has been loaded with 6 records.

3k ok sk sk ok ok ok Sk ok ok sk skok ok ok ok ok ok ok ok ok sk k ok ok

** Exiting ALIANT driver *x
sokokskokoktoRokkokokoksk ok ok dokok sk koo

F.2 Batch Operating Instructions

To execute ALIANT in batch mode, an additional parameter is required at startup

time:

runax <grammar filename> <number of combinations> <batch filename> &

The batch filename is the complete filename of a text input file containing the entries that
are normally input from the keyboard. A batch job can be executed in background by

appending the ampersand as indicated above. A sample batch file is shown below:

g SR

s

T i

b g

Lt P P 1

Ll

et L S L LA AL N e O i bt 8 ST e gt T ALt T o0

et ISR N T R LR 0t L i T

B L e

e sl bt

select combinations for display)
duplicate threshold)
10 (10 = feature threshold)

O
~ o~
(@R
nou

y (y = display selected combinations)

n (n = end combination selection)

n (y = select combinations for database)
0 (0 = duplicate threshold)

10 (10 = feature threshold)

This batch file will display (continuously) all combinations with 10 or less features and
load them into the AFIS database. The paging option should never be selected in a batch
file since the batch file would also have to include the correct number of paging responses.

The minimum batch file would simply allow the processing statistics to be recorded:

n (n
n (n

don’t select combinations for display)
don’t select combinations for database)

n

The output from an ALIANT batch execution is directed to the alntout file. This file
includes the start and finish date/time as shown below for the minimum batch file example.
Note that in batch mode, the responses input from the batch file do not show up in the

alnt.out file.

Sat Sep 1 19:04:09 EDT 1990
<newpage>

skokokatokkk ook ok ook ok kbl ook kK kskkat ok sk Kok ok
**% ALIANT initialization in progress *x

s ok o sk o ook o ok 3R ok R o o ok S sk 56 o o K e ar o Sk SR Kok ok ok K oK ok ok

<newpage>

o o ok s ok ok e ok ok ke ke sk ke ok e ok s sk stk sk ok ok ok ok sk s sk sk s sk ok ok ok ok ok sk sk ok ok ok sk ko ok

*¥ Processing Gen combinations, please wait... *x*
Foksotokskokskkokokok ks tokkskorolok kol otk koktob sotokok skt kol ok

EI R S A A A O B A S A S A S S A Y

wokkkk ALIANT Processing Statistics kkkork
Number of combinations processed: 200
Null combination count: O

Duplicate combination count: 78
Resulting combinations: 122

Sokokokokosk ok kokokokok s ko ok ok ook ks sk ok kb ok ok sk ok

Enter ‘y’ to SELECT combinations for display >>
<newpage>

Enter ‘y’ to load AFIS database >>

sk kok ok o ok oKk ook ok sk kR sk Kok ok

** Exiting ALIANT driver **

ok ok ok sk ok ke ok ok ok sk kok ok k ok ok ok ok ok ok ok ok ok ok K

Sat Sep 1 19:04:30 EDT 1990

F.3 Sample Interactive Output

This section includes a complete example of an ALIANT interactive session. If the

same user responses were provided in a batch input file, an ALIANT batch session would

produce this same output in the alnt.out file. For clarity, all negative responses use the

letter ”n”. In actual use, a simple carriage return or other entry will achieve the same

purpose.

—— o > o e s v =t = 0 A v o P e] o -

~- Gen execution in progress --

- > > - s " - o

B o o W L L AL R b o,

[yloll sius ot i gl bl haban Ak S

all

Lt

E
3
3
5
E:
;
3

el LA Sl LAY DAL

#

0l 4 ol o KL RS0 R N 2

KA

Al

=
£
=
1
5

Ml by

o L L 1 o S TR LW 0t R %6 T R L 2

<newpage>

Fokokkoktkokokkkokkkoklok sk Rk ok kkokok doklokskkodok ok ok

*% ALTANT initialization in progress **
Fokskrokskaiskorook kool Soltolokok sokokkokokokokakdor KOk X

<newpage>
okooksdokatokkoksokodok ok skokokdoloRokkokoksokok ook okskok sk sk ook ko ok ok ok ok

*% Processing Gen combinations, please wait... *x
Rk ok sk ok skok ok ki sk ok sk ok ok ek ok skl stk sk ek sk o sk koK ok ok ok ok Kk ok ok

DR R I A N R A N)

*xdkkk ALTANT Processing Statistics ¥k¥kk
Number of combinations processed: 200
Null combinacion count: O

Duplicate combination count: 78
Resulting combinations: 122

sokdokokakokoskok ok okok kool kol sokakokosk ok sk ok ok sk ok ko
Enter ‘y’ to SELECT combinations for display >> y
<newpage>

Enter duplication threshold >> 4
<newpage>

Enter feature threshold >> 50

<newpage>

There are 9 combinations with a duplication count >= 4,
and a feature count <= 50.

Enter ‘y’ to DISPLAY selected combinations,
or ‘p’ to DISPLAY with paging >> n

Enter ‘y’ to SELECT combinations for display >> ¥
<newpage>

Enter duplication threshold >> 3

E
4
2
P
E
3
oy
3
R
3
54
E
3
=
3
3
3
3
3
3
ks
E:
1

il dedUe bt Lis A abca A ST ¥ S Wt YA SR A LR

Iy NP Lt i L (o L e T e A0 % AL P st Tt 8 bt BN T a2 S 1L LA IAS 7 G

LSRR

AR

Lot oo et sl b s o

<newpage>
Enter feature threshold >> 30
<newpage>

There are 11 combinations with a duplication count >= 3,
and a feature count <= 30.

Enter ‘y’ to DISPLAY selected combinations,
or ‘p’ to DISPLAY with paging >> n

Enter ‘y’ to SELECT combinations for display >> y
<newpage>

Enter duplication threshold >> 5

<newpage>

Enter feature threshold >> 10

<newpage>

There are 6 combinations with a duplication count >= 5,
and a feature count <= 10.

Enter ‘y’ to DISPLAY selected combinations,
or ‘p’ to DISPLAY with paging >> p

<newpage>

Combination 4:
(9 duplicatels])

function_subunit (count: 1)

Combination 9:
(6 duplicatels])

package_spec (count: 1)
use.clause (count: 1)
with..clause (count: 1)

g

Combination 25:
(S duplicatels])

use_clause (count: 2)
with_clause (count: 1)
function_subunit (count: 1)

Combination 29:

1
|
\
o Uy 1K, xu-_uz.:«\mmnmu‘zs‘wmumumumu..ma..muﬂmJ

Press RETURN to continue paging,
or enter ‘q’ to quit paging >>

(7 duplicate[s])
procedure_subunit (count: 1)

Combination 40:
(6 duplicate[s])

subprogram_decl:procedure (count: 1)

Combination 44:
(6 duplicate[s])

Ll St 1

use_clause (count: 1)
with_clause (count: 2)
procedure_subunit (count: 1)

Enter ‘y’ to SELECT combinations for display >> n

<newpage>

Enter ‘y’ to load AFIS database >> y

<newpage>

el Wb, d] B T s L,

Enter duplication threshold for database >> 5
<newpage>
Enter feature threshold for database >> 10

<newpage>

Loading AFIS database...

I Pt

...The AFIS database has been loaded with 6 recoxrds.

sk Rk Roksk kR ok kK ok otk ok
*x Exiting ALIANT driver *x
koo Rokok kR ok Kk ok ook

F.4 Sample Support File Formats

This section contains sample listings for the following ALIANT support files not

already displayed: gen_out, g_temp, and afis_db.

gen.out : Contains the output combinations from the Gen software.

START_COMPILATION: subprogram_decl:procedure subprog_param_spec:default
:END_COMPILATION

START_.COMPILATION: procedure_body gen_package_instantiation gen_actual:type
null_statement if_statement if_statement label case_statement
simple_expression not_operator based_ literal multiplication real_literal
exponentiation based_literal and_operator simple_expression unary_addition
based_literal exponentiation string_literal membexrship_test_in explicit_range
null_statement block_statement label assignment_statement simple_expression
unary.minus aggregate exponentiation based_literal rem_operator absolute_value
based_literal exception_handler exception_choice_others if_statement
null_statement if_statement label null_statement :END_COMPILATION

START_COMPILATION: with_clauce use_clause package_body null_statement label
label null_statement :END_COMPILATION

START_COMPILATION: function_subunit .END_COMPILATION
START_COMPILATION: with_clause function_subunit :END_COMPILATION

START_COMPILATION: with_clause use_clause with_clause use_clause
subprogram_decl:procedure :END_COMPILATION

START_COMPILATION: package_spec object_decl :END_COMPILATION

START_COMPILATION: with_clause use_clause with_clause use_clause package_body
null_statement assignment_statement simple_expression unary_addition
not_operator null_access_value division absolute_value null_access_value
catenation based_literal exponentiation null_access_value multiplication
not_operator real_literal membership_test_in explicit_range orelse

F-11

e HE A

£ 30 0 el it g

ROV P TERO U IO T IR L IALE KPS

Y WERUN AR S SOVE 0 |

WP A B T Dbl | el d A e s Y S bt o N

Al B P e B A e T L0000, T L 1 b b 8 v 8 AL i B U L o L o b €8 A 100 B D T 10k £ K i B

simple_expression null_access_value exponentiation based_literal

catenation null_access_value membership_test_in type.mark exception_handler
exception_choice_others label null_statement null_statement :END_COMPILATION
START_COMPILATION: package_spec object_decl :END_COMPILATION

START_COMPILATION: with_clause use_clause package_spec :END_COMPILATION

g-temp (as input to Gen): When used as input to Gen, this file contains the input

grammar with the generation statement appended (i.e., “* 100 compilation).

graphic_character = (“graphic.character ")
basic_graphic_character = ("basic_graphic_character ")
basic_character = ("basic_character ")

identifier = ("identifier ")

. (majority removed for brevity, see Appendix E for complete grammar)

alignment_clause) ("" | 4 component_clause))
alignment_clause = ("alignment_clause ")
component_clause = ('component_clause ")
address_clause = ("address_clause ")
coda_statement = ("code_statement ")

* 100 compilation

12

g-temp (as input to ALIANT Driver): When used as input to the ALIANT Driver,

this only contains the number of combinations originally input as parameter 2. The previ-

ous contents of g_-temp, the grammar and generation statement, are no longer needed and

are overwritten by a single integer value.

1000

afis.db : Contains the bit matrix for the selected combinations (for brevity, only

two records are shown).

>>>> AFIS DATABASE FILE <<<<

00000000000000000000000000000000000000
00
00
00
00¢0
0000000010000000000000000000000000000000

0000000000000000000000000000

4:

00000000000000000000000000000000000000
000000000000000000000000000000000000000°0
00000000000000000000000000000000000000200

9:

00

1000010000000000000000000000000000000000CO0
0010000000000000000000000000000000000090

0000000000000000000000000000

F-13

10.

11.

12.

13.

14.

16

17.

18.
19.

Bibliography

. Ada Compiler Validalion Proccdures. Technical Report AD-A210406, Washington D.C.: Ada

Joint Program Office, May 1089,

. Ada Compiler Validalion Summary Repori: Verdiz Corporation, VADS VAX UNIX, Version

5.5, DEC VAX 11/750. Technical Report AD-A211623, Wright-Patterson AFB, OH: Ada
Validation Facility, 1989.

. Ada Validation Facility, Aeronautical Systems Division, Air Force Systems Command. DBMS-

ALIANT-PAT Statement of Work - Task Order 17 Wright-Patterson AFB Ol 1988,

. Aho, A. V. and J. D. Ullman. Principles of Compiler Design. MA: Addison-Wesley Publishing

Company, April 1979.

. Air Force Armament Laboratory. Ada 8X Project Report/Plan. Technical Report. Washing-

ton: Office of the Under Secretary of Defense for Acquisition, January 1989.

. Anderson, Chris. “Ada 9X Project.” Report to the Public, November 1989,

. Bass, B. “DOD Issues Revised Ada Compiler Validation Tests,” Government Computer News,

7(18):53 (August 1988).

. Bazzichi, F. and I. Spadafora. “An Automatic Generator for Compiler Testing,” IEEE Trans-

actions on Soflware Engineering, SE-8(4):343-353 (July 1982).

. Berning, Paul T. and others. Aulomated Compiler Test Case Generaiion. Technical Report

RADC-TR-78-30, Griffis AFB, NY: Naval Air Development Center, 1978.

Bertolino, A. and M. Fusani. “Software Validation: A Government-Imposed Challenge to the
State of the Art in Certification,” Computer Standards and Interfaces, 6(4):433-436 (1987).

Burgess, C. J. “Towards the Automatic Generaticn of Executable Programs to Test a Pascal
Compiler.” In Barnes, D. and P. Brown, editors, Software Engineering 1986, pages 304-316,
London: Peter Perigrinus Ltd., 1986.

Carlson, W. E. “Ada: A Promising Beginning,” Computer, 1/(6):13-15 (June 1981).

Craine, D. B. Ada Compiler Evaluation Techniques for Real-Time Avionics Applicalions. MS
thesis, Air Force Institute of Technology (AFIT), 1987.

DeMillo, R. and others. Software Testing and Evaluation. Menlo Park, California: Ben-
jamin/Cummings, 1987.

. Department of Commerce. Software Validation, Verification, and Testing Technigue and Toal

Reference Guide. NBS Special Publication 500-93. Washington D.C.: Government Printing
Office, September 1982.

Department of Defense. Reference Manual for the Ada Progremming Language. ANSI/MIL-
STD 1815A. Washington D.C.: Government Printing Office, Janpuary 1983.

Drossopoulou, J. Uhl S. and others. An Allribute Grammar for the Semantic Analysis of Adu.
Berlin: Springer-Verlag, 1982.

Bilers, D. E-Mail Correspondence. Irvine Compiler-Corp., 11 November 1989.

Ganapathi, M. and G. O. Mendal. “Issues in Ada Compiler Technology,” Computer, 22(2):52-
60 {February 1089).

BIB-1

B IR R I T) »

ATy

L

i S

Ao

i e fri P} W e F LS LS

g A e %

RIS O T ALY o

PTRTIONE 12 PR R

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

Goepper, Eric R. A Source Code Analyzer 1o Predict Compilalion Time for Avionics Software
Using Software Science Measures. MS thesis, Air Force Institute of Technology (AFIT), 1988.

Goodenough, J. B. “The Ada Comp. 2r Validation Cavability,” Computer, 14(6):57-64 (June
1981).

----- . Ada Compiler Validation Implementers’ Guidc. Technical Report, SofTech, Inc.,

~~~~~ . “Ada Compiler Validation: An Example of Software Testing Theory and Practice.”
In A., Habermann and U. Montanari, editors, System Development and Ada - Proceedings of
the CRAI Workshop on Software Factories and Ada, pages 195-232, Berlin, W. G.: Springer-
Verlag, 1987.

Herr, C. and others. “Compiler Validation and Reusable Ada Parts for Real-Time, Embedded
Applications,” Ada Letters, 8(5):75--86 (Sept/Oct 1988).

Homer, W. and R. Schooler. “Independent Testing of Compiler Phases Using a Test Case
Generator,” Software Practice and Ezperience, 19(1):53-62 (January 1989).

Johnson, S. C. YACC - Yet Another Compiler Compiler. Technical Report CSTR 32, Murray
Hill, N.J.: Bell Laboratories, 1975.

Joyce, D. O. Validating and Evalualing Ada’s Representailion Clauses and Implementalion-
Dependent Features. MS thesis, Air Force Institute of Technology (AFIT), 1987.

Kasten, G. “A Test Case Generation Program.” Software description, 18 June 1986.
Lee, P. Realistic Compiler Generation. MA: MIT Press, 1989.

Lesk, M. E. Lex - A Lezical Analyzer Generator. Technical Report CSTR 37, Murray Hill,
N.J.: Bell Laboratories, 1975.

Mandl, R. “Orthogonal Latin Squares: An Application of Experiment Design to Compiler
Testing,” Communications of the ACM , 28(10):1054-1058 (October 1985).

Oliver, P. “Experiences in Building and Using Compiler Validation Systems.” In Merwin, R.
and J. Zanca, editors, AFIPS Conference Proceedings, pages 1051-1057, New Jersey: AFIPS
Press, June 1979.

Paprotney, George B. LL - A Generator of Recursive Descent Parsers for LL(k) Languages.
MS thesis, Air Force Institute of Technology (AFIT), 1983.

Rennels, D. E-Mail Correspondence. New York University, NY., 14 September 1989.

————— and others. “Tool to Identify Ada Language Construc.s in Source Code.” Paper
presented at the First Annual Armed Forces Communications and Electronics Association
Mid-West Regional Conference. Dayton, Ohio, 18 July 1990.

Schmidt, David A. Denotational Semantics - A Methodology for Language Development.
BRoston: Allyn and Bacon, Inc., 1986.

Tay'or, Tim T. Personal Correspondence. McDonnell Douglas Corporation, St. Louis MO, 2
January 1999.

UNIX User’s Manual - Reference Guide. Berkeley, CA: 4.3 Berkeley Software Distribulion,
April 1986.

Wallace, Robert H. Practitioner’s Guide to Ada. NY: McGraw-11ill, Inc., 1986,

Weiderman, N, . Ada Adoption Handbook: Compiler Evalualion and Selection. Technical
Report AD-A207717, Pittsburgh: Software Engineering Institute, 1989.

BIB-2

s

L R A TR L B R

S B

L T LS

e

ol Db Sy 1if 2

3
E
ES
]
p
2
E
2




41. Wichmann, B. A. Insecurities in the Ada Programming Language. Technical Report DITC
137/89, United Kingdom: National Physical Laboratory, 1989.

42, - =~ = - and M. Davies. Ezperience with a Compiler Testing Tool. Technical Report DITC
138/89, United Kingdom: National Physical Laboratory, 1989.

43. Williams, R. J. Aulomalic Generation of Parsers Using Yacc and Lez. MS thesis, Wright
State University, CH, 1986.

44. Wilson, Steven P. Technical Director Ada Validation Facility. “Ada Features Identification
System.” Briefing to the AVF Managers Meeting, 8 June 1989.

BIB-3

G b e e e

L i g

i
.



REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reszring burden for this Loliection =1 information 1s estimated to average | hour per response, including the time 10r reviewing instructions, sCarching existing datd sources
gatherin3 and Maintaining the data needed and completing anc reviewaing the coliection of intormation  Send comments regarding this burden estumate or any other aspect of this
collectsr 2* nfarmatior “n iuding suggestions for reducing this burden to Washington Headauarters Services, Directorate 1or information Operstions and Reports, 1215 Jetterson
Davis b 2= may, Suite 1204 w lington, vA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704:0108), washington, 0C 20503,

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1990 Master's Thesis

4. TITLE AND SUBTITLE
AUTOMATIC DETERMINATION OF RECOMMENDED TEST
COMBINATIONS FOR ADA COMPILERS

6. AUTHOR(S)

James S. Marr, Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology,WPAFB OH
45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/90D-09

9, SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution
unlimited

12b. DISTRIBUTION CODE

13. ABSTRACTY (Maximum 200 words)

Ada compilers are validated using the 2da Compiler Validation
Capability (ACVC) test suite, containing over 4000 individual test
programs. Each test program focuses, to the extent possible, on a
single language feature. Despite the advantages of this

"atomic testing" methodology, it is often the unexpected interactions
between language features that result in compilation problems. This
research investigated techniques to automatically identify recom-
mended combinations of Ada language features for compiler testing.

A prototype program was developed to analyze the Ada language gramwar
specification and generate a list of recommended combinations of
features to be tested. While the skill and intuition of the compiler
tester aré essential to the annotation of the Ada grammar, the
prototype demonstrated that automated support tools can be used to
identify recommended combinations for Ada compiler testing.

14. SUBJECT TERMS

Ada Programming Language

15. NUMBER OF PAGES

Ada Compiler Validation, Compiler Testing, Grammars, 219

Compiler Testing, Test Case Generators, Compilers, 16. PRICE CODE_

17. SECURITY CLASSIFICATION ) 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT ' -

NSN 75£0-01-280-5500

Unclassified Unclassified Unclassified UL gl
: - Standard Form 298 (Rev. 2-89)°

Prescubed by ANSI Std 239-18
298-102




